Source code for catalyst.utils.seed

import random

import numpy as np


[docs]def set_global_seed(seed: int) -> None: """ Sets random seed into PyTorch, TensorFlow, Numpy and Random. Args: seed: random seed """ try: import torch except ImportError: pass else: torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) try: import tensorflow as tf except ImportError: pass else: if tf.__version__ >= "2.0.0": tf.random.set_seed(seed) elif tf.__version__ <= "1.13.2": tf.set_random_seed(seed) else: tf.compat.v1.set_random_seed(seed) random.seed(seed) np.random.seed(seed)
[docs]class Seeder: """ A random seed generator. Given an initial seed, the seeder can be called continuously to sample a single or a batch of random seeds. .. note:: The seeder creates an independent RandomState to generate random numbers. It does not affect the RandomState in ``np.random``. Example:: >>> seeder = Seeder(init_seed=0) >>> seeder(size=5) [209652396, 398764591, 924231285, 1478610112, 441365315] """
[docs] def __init__(self, init_seed: int = 0, max_seed: int = None): """ Initialize the seeder. Args: init_seed (int, optional): Initial seed for generating random seeds. Default: ``0``. """ assert isinstance(init_seed, int) and init_seed >= 0, \ f"expected non-negative integer, got {init_seed}" self.rng = np.random.RandomState(seed=init_seed) # Upper bound for sampling new random seeds self.max = max_seed or np.iinfo(np.int32).max
def __call__(self, size=1): """ Return the sampled random seeds according to the given size. Args: size (int or list): The size of random seeds to sample. Returns ------- seeds : list a list of sampled random seeds. """ seeds = self.rng.randint(low=0, high=self.max, size=size).tolist() return seeds