Utils¶
-
catalyst.utils.argparse.
args_are_not_none
(*args: Optional[Any]) → bool[source]¶ Check that all arguments are not None :param *args: values :type *args: Any
- Returns
True if all value were not None, False otherwise
- Return type
bool
-
catalyst.utils.argparse.
boolean_flag
(parser: argparse.ArgumentParser, name: str, default: Optional[bool] = False, help: str = None, shorthand: str = None) → None[source]¶ Add a boolean flag to a parser inplace.
- Parameters
parser (argparse.ArgumentParser) – parser to add the flag to
name (str) – argument name –<name> will enable the flag, while –no-<name> will disable it
default (bool, optional) – default value of the flag
help (str) – help string for the flag
shorthand (str) – shorthand string for the argument
Examples
>>> parser = argparse.ArgumentParser() >>> boolean_flag( >>> parser, "flag", default=False, help="some flag", shorthand="f" >>> )
-
catalyst.utils.checkpoint.
pack_checkpoint
(model=None, criterion=None, optimizer=None, scheduler=None, **kwargs)[source]¶
-
catalyst.utils.checkpoint.
save_checkpoint
(checkpoint: Dict, logdir: Union[pathlib.Path, str], suffix: str, is_best: bool = False, is_last: bool = False, special_suffix: str = '')[source]¶
-
catalyst.utils.checkpoint.
unpack_checkpoint
(checkpoint, model=None, criterion=None, optimizer=None, scheduler=None)[source]¶
-
catalyst.utils.config.
load_ordered_yaml
(stream, Loader=<class 'yaml.loader.Loader'>, object_pairs_hook=<class 'collections.OrderedDict'>)[source]¶ Loads yaml config into OrderedDict
- Parameters
stream – opened file with yaml
Loader – base class for yaml Loader
object_pairs_hook – type of mapping
- Returns
configuration
- Return type
dict
-
catalyst.utils.config.
get_environment_vars
() → Dict[str, Any][source]¶ Creates a dictionary with environment variables
- Returns
environment variables
- Return type
dict
-
catalyst.utils.config.
dump_environment
(experiment_config: Dict, logdir: str, configs_path: List[str] = None) → None[source]¶ Saves config, environment variables and package list in JSON into logdir
- Parameters
experiment_config (dict) – experiment config
logdir (str) – path to logdir
configs_path – path(s) to config
-
catalyst.utils.config.
parse_args_uargs
(args, unknown_args)[source]¶ Function for parsing configuration files
- Parameters
args – recognized arguments
unknown_args – unrecognized arguments
- Returns
updated arguments, dict with config
- Return type
tuple
-
catalyst.utils.dataset.
balance_classes
(dataframe: pandas.core.frame.DataFrame, class_column: str = 'label', random_state: int = 42, how: str = 'downsampling') → pandas.core.frame.DataFrame[source]¶ Balance classes in dataframe by
class_column
See also
catalyst.data.sampler.BalanceClassSampler
- Parameters
dataframe – a dataset
class_column – which column to use for split
random_state – seed for random shuffle
how – strategy to sample must be one on [“downsampling”, “upsampling”]
- Returns
new dataframe with balanced
class_column
- Return type
pd.DataFrame
-
catalyst.utils.dataset.
column_fold_split
(dataframe: pandas.core.frame.DataFrame, column: str, random_state: int = 42, n_folds: int = 5) → pandas.core.frame.DataFrame[source]¶ Splits DataFrame into N folds.
- Parameters
dataframe – a dataset
column – which column to use
random_state – seed for random shuffle
n_folds – number of result folds
- Returns
new dataframe with fold column
- Return type
pd.DataFrame
-
catalyst.utils.dataset.
create_dataframe
(dataset: Dict[str, object], **dataframe_args) → pandas.core.frame.DataFrame[source]¶ Create pd.DataFrame from dict like {key: [values]}
- Parameters
dataset – dict like {key: [values]}
**dataframe_args –
- indexIndex or array-like
Index to use for resulting frame. Will default to np.arange(n) if no indexing information part of input data and no index provided
- columnsIndex or array-like
Column labels to use for resulting frame. Will default to np.arange(n) if no column labels are provided
- dtypedtype, default None
Data type to force, otherwise infer
- Returns
dataframe from giving dataset
- Return type
pd.DataFrame
-
catalyst.utils.dataset.
create_dataset
(dirs: str, extension: str = None, process_fn: Callable[[str], object] = None) → Dict[str, object][source]¶ Create dataset (dict like {key: [values]}) from vctk-like dataset:
dataset/ cat/ *.ext dog/ *.ext
- Parameters
dirs – path to dirs, for example /home/user/data/**
extension – data extension you are looking for
process_fn – function(path_to_file) -> object process function for found files, by default
- Returns
dataset
- Return type
dict
-
catalyst.utils.dataset.
default_fold_split
(dataframe: pandas.core.frame.DataFrame, random_state: int = 42, n_folds: int = 5) → pandas.core.frame.DataFrame[source]¶ Splits DataFrame into N folds.
- Parameters
dataframe – a dataset
random_state – seed for random shuffle
n_folds – number of result folds
- Returns
new dataframe with fold column
- Return type
pd.DataFrame
-
catalyst.utils.dataset.
prepare_dataset_labeling
(dataframe: pandas.core.frame.DataFrame, class_column: str) → Dict[str, int][source]¶ Prepares a mapping using unique values from
class_column
{ "class_name_0": 0, "class_name_1": 1, ... "class_name_N": N }
- Parameters
dataframe – a dataset
class_column – which column to use
- Returns
mapping from tag to labels
- Return type
Dict[str, int]
Separates values in
class_column
column- Parameters
dataframe – a dataset
tag_column – column name to separate values
tag_delim – delimiter to separate values
Returns:
-
catalyst.utils.dataset.
split_dataframe
(dataframe: pandas.core.frame.DataFrame, **train_test_split_args) → Tuple[pandas.core.frame.DataFrame, pandas.core.frame.DataFrame][source]¶ Split dataframe in train and test part.
- Parameters
dataframe – pd.DataFrame to split
**train_test_split_args –
- test_sizefloat, int, or None (default is None)
If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the test split. If int, represents the absolute number of test samples. If None, the value is automatically set to the complement of the train size. If train size is also None, test size is set to 0.25.
- train_sizefloat, int, or None (default is None)
If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the train split. If int, represents the absolute number of train samples. If None, the value is automatically set to the complement of the test size.
- random_stateint or RandomState
Pseudo-random number generator state used for random sampling.
- stratifyarray-like or None (default is None)
If not None, data is split in a stratified fashion, using this as the class labels.
- Returns
train and test DataFrames
PS. It exist cause sklearn split is overcomplicated.
-
catalyst.utils.dataset.
split_dataset
(dataset: pandas.core.frame.DataFrame, **train_test_split_args) → Tuple[Dict[str, object], Dict[str, object]][source]¶ Split dataset in train and test parts.
- Parameters
dataset – dict like dataset
**train_test_split_args –
- test_sizefloat, int, or None (default is None)
If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the test split. If int, represents the absolute number of test samples. If None, the value is automatically set to the complement of the train size. If train size is also None, test size is set to 0.25.
- train_sizefloat, int, or None (default is None)
If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the train split. If int, represents the absolute number of train samples. If None, the value is automatically set to the complement of the test size.
- random_stateint or RandomState
Pseudo-random number generator state used for random sampling.
- stratifyarray-like or None (default is None)
If not None, data is split in a stratified fashion, using this as the class labels.
- Returns
train and test dicts
-
catalyst.utils.dataset.
stratified_fold_split
(dataframe: pandas.core.frame.DataFrame, class_column: str, random_state: int = 42, n_folds: int = 5) → pandas.core.frame.DataFrame[source]¶ Splits DataFrame into N stratified folds.
Also see
catalyst.data.sampler.BalanceClassSampler
- Parameters
dataframe – a dataset
class_column – which column to use for split
random_state – seed for random shuffle
n_folds – number of result folds
- Returns
new dataframe with fold column
- Return type
pd.DataFrame
-
catalyst.utils.ddp.
get_real_module
(model: torch.nn.modules.module.Module) → torch.nn.modules.module.Module[source]¶ Return a real model from a torch.nn.DataParallel, torch.nn.parallel.DistributedDataParallel, or apex.parallel.DistributedDataParallel.
- Parameters
model – A model, or DataParallel wrapper.
- Returns
A model
-
catalyst.utils.ddp.
is_wrapped_with_ddp
(model: torch.nn.modules.module.Module) → bool[source]¶ Checks whether model is wrapped with DataParallel/DistributedDataParallel.
-
class
catalyst.utils.frozen.
FrozenClass
[source]¶ Class which prohibit
__setattr__
on existing attributesExamples
>>> class RunnerState(FrozenClass):
-
catalyst.utils.hash.
get_hash
(obj: Any) → str[source]¶ Creates unique hash from object following way: - Represent obj as sting recursively - Hash this string with sha256 hash function - encode hash with url-safe base64 encoding
- Parameters
obj – object to hash
- Returns
base64-encoded string
-
catalyst.utils.image.
has_image_extension
(uri) → bool[source]¶ Check that file has image extension
- Parameters
uri (Union[str, pathlib.Path]) – The resource to load the file from
- Returns
True if file has image extension, False otherwise
- Return type
bool
-
catalyst.utils.image.
imread
(uri, grayscale=False, expand_dims=True, rootpath=None, **kwargs)[source]¶ - Parameters
uri – {str, pathlib.Path, bytes, file}
resource to load the image from, e.g. a filename, pathlib.Path, (The) –
address or file object, see the docs for more info. (http) –
grayscale –
expand_dims –
rootpath –
Returns:
-
catalyst.utils.image.
mask_to_overlay_image
(image: numpy.ndarray, masks: List[numpy.ndarray], threshold: float = 0, mask_strength: float = 0.5) → numpy.ndarray[source]¶ Draws every mask for with some color over image
- Parameters
image (np.ndarray) – RGB image used as underlay for masks
masks (List[np.ndarray]) – list of masks
threshold (float) – threshold for masks binarization
mask_strength (float) – opacity of colorized masks
- Returns
HxWx3 image with overlay
- Return type
np.ndarray
-
catalyst.utils.image.
mimread
(uri, clip_range: Tuple[int, int] = None, expand_dims: bool = True, rootpath: Union[str, pathlib.Path] = None, **kwargs)[source]¶ - Parameters
uri – {str, pathlib.Path, bytes, file}
resource to load the mask from, e.g. a filename, pathlib.Path, (The) –
address or file object, see the docs for more info. (http) –
clip_range (Tuple[int, int]) – lower and upper interval edges, image values outside the interval are clipped to the interval edges
expand_dims (bool) – if True, append channel axis to grayscale images
rootpath (Union[str, pathlib.Path]) – path to an image (allows to use relative path)
- Returns
Image
- Return type
np.ndarray
-
catalyst.utils.image.
tensor_to_ndimage
(images: torch.Tensor, mean: Tuple[float, float, float] = (0.485, 0.456, 0.406), std: Tuple[float, float, float] = (0.229, 0.224, 0.225), dtype=<class 'numpy.float32'>) → numpy.ndarray[source]¶ Convert float image(s) with standard normalization to np.ndarray with [0..1] when dtype is np.float32 and [0..255] when dtype is np.uint8.
- Parameters
images – [B]xCxHxW float tensor
mean – mean to add
std – std to multiply
dtype – result ndarray dtype. Only float32 and uint8 are supported.
- Returns
[B]xHxWxC np.ndarray of dtype
-
catalyst.utils.initialization.
bias_init_with_prob
(prior_prob)[source]¶ Initialize conv/fc bias value according to giving probablity
-
catalyst.utils.initialization.
create_optimal_inner_init
(nonlinearity: torch.nn.modules.module.Module, **kwargs) → Callable[[torch.nn.modules.module.Module], None][source]¶ Create initializer for inner layers based on their activation function (nonlinearity).
-
catalyst.utils.initialization.
kaiming_init
(module, mode='fan_out', nonlinearity='relu', bias=0, distribution='normal')[source]¶
-
catalyst.utils.initialization.
outer_init
(layer: torch.nn.modules.module.Module) → None[source]¶ Initialization for output layers of policy and value networks typically used in deep reinforcement learning literature.
-
catalyst.utils.misc.
append_dict
(dict1, dict2)[source]¶ Appends dict2 with the same keys as dict1 to dict1
-
catalyst.utils.misc.
copy_directory
(input_dir: pathlib.Path, output_dir: pathlib.Path) → None[source]¶ Recursively copies the input directory
- Parameters
input_dir (Path) – input directory
output_dir (Path) – output directory
-
catalyst.utils.misc.
get_utcnow_time
(format: str = None) → str[source]¶ Return string with current utc time in chosen format
- Parameters
format (str) – format string. if None “%y%m%d.%H%M%S” will be used.
- Returns
formatted utc time string
- Return type
str
-
catalyst.utils.misc.
is_exception
(ex: Any) → bool[source]¶ Check if the argument is of Exception type
-
catalyst.utils.misc.
maybe_recursive_call
(object_or_dict, method, recursive_args=None, recursive_kwargs=None, **kwargs)[source]¶
-
catalyst.utils.misc.
merge_dicts
(*dicts: dict) → dict[source]¶ Recursive dict merge. Instead of updating only top-level keys,
merge_dicts
recurses down into dicts nested to an arbitrary depth, updating keys.- Parameters
*dicts – several dictionaries to merge
- Returns
deep-merged dictionary
- Return type
dict
-
catalyst.utils.misc.
pairwise
(iterable: Iterable[Any]) → Iterable[Any][source]¶ Iterate sequences by pairs
- Parameters
iterable – Any iterable sequence
- Returns
pairwise iterator
Examples
>>> for i in pairwise([1, 2, 5, -3]): >>> print(i) (1, 2) (2, 5) (5, -3)
-
catalyst.utils.numpy.
geometric_cumsum
(alpha, x)[source]¶ Calculate future accumulated sums for each element in a list with an exponential factor.
Given input data \(x_1, \dots, x_n\) # noqa: E501, W605 and exponential factor \(lpha\in [0, 1]\), # noqa: E501, W605 it returns an array \(y\) with the same length and each element is calculated as following
\[y_i = x_i + lpha x_{i+1} + lpha^2 x_{i+2} + \dots + lpha^{n-i-1}x_{n-1} + lpha^{n-i}x_{n} # noqa: E501, W605\]Note
To gain the optimal runtime speed, we use
scipy.signal.lfilter
Example
>>> geometric_cumsum(0.1, [[1, 1], [2, 2], [3, 3], [4, 4]]) array([[1.234, 1.234], [2.34 , 2.34 ], [3.4 , 3.4 ], [4. , 4. ]])
- Parameters
alpha (float) – exponential factor between zero and one.
x (np.ndarray) – input data, [trajectory_len, num_atoms]
- Returns
calculated data
- Return type
out (np.ndarray)
-
catalyst.utils.numpy.
get_one_hot
(label: int, num_classes: int, smoothing: float = None) → numpy.ndarray[source]¶ Applies OneHot vectorization to a giving scalar, optional with label smoothing from https://arxiv.org/abs/1812.01187
- Parameters
label (int) – scalar value to be vectorized
num_classes (int) – total number of classes
smoothing (float, optional) – if specified applies label smoothing from
Bag of Tricks for Image Classification with Convolutional Neural Networks
paper
- Returns
a one-hot vector with shape
(num_classes,)
- Return type
np.ndarray
-
catalyst.utils.pandas.
dataframe_to_list
(dataframe: pandas.core.frame.DataFrame) → List[dict][source]¶ Converts dataframe to a list of rows (without indexes)
- Parameters
dataframe (DataFrame) – input dataframe
- Returns
list of rows
- Return type
(List[dict])
-
catalyst.utils.pandas.
folds_to_list
(folds: Union[list, str, pandas.core.series.Series]) → List[int][source]¶ This function formats string or either list of numbers into a list of unique int
- Parameters
folds (Union[list, str, pd.Series]) – Either list of numbers or one string with numbers separated by commas or pandas series
- Returns
list of unique ints
- Return type
List[int]
Examples
>>> folds_to_list("1,2,1,3,4,2,4,6") [1, 2, 3, 4, 6] >>> folds_to_list([1, 2, 3.0, 5]) [1, 2, 3, 5]
- Raises
ValueError – if value in string or array cannot be casted to int
-
catalyst.utils.pandas.
map_dataframe
(dataframe: pandas.core.frame.DataFrame, tag_column: str, class_column: str, tag2class: Dict[str, int], verbose: bool = False) → pandas.core.frame.DataFrame[source]¶ This function maps tags from
tag_column
to ints intoclass_column
Usingtag2class
dictionary- Parameters
dataframe (pd.DataFrame) – input dataframe
tag_column (str) – column with tags
class_column (str) –
tag2class (Dict[str, int]) – mapping from tags to class labels
verbose – flag if true, uses tqdm
- Returns
updated dataframe with
class_column
- Return type
pd.DataFrame
-
catalyst.utils.pandas.
merge_multiple_fold_csv
(fold_name: str, paths: Optional[str]) → pandas.core.frame.DataFrame[source]¶ Reads csv into one DataFrame with column
fold
:param fold_name: current fold name :type fold_name: str :param paths: paths to csv separated by commas :type paths: str- Returns
merged dataframes with column
fold
==fold_name
- Return type
pd.DataFrame
-
catalyst.utils.pandas.
read_csv_data
(in_csv: str = None, train_folds: Optional[List[int]] = None, valid_folds: Optional[List[int]] = None, infer_folds: Optional[List[int]] = None, seed: int = 42, n_folds: int = 5, in_csv_train: str = None, in_csv_valid: str = None, in_csv_infer: str = None, tag2class: Optional[Dict[str, int]] = None, class_column: str = None, tag_column: str = None) → Tuple[pandas.core.frame.DataFrame, List[dict], List[dict], List[dict]][source]¶ From giving path
in_csv
reads a dataframe and split it to train/valid/infer folds or from several pathsin_csv_train
,in_csv_valid
,in_csv_infer
reads independent folds.Note
- This function can be used with different combinations of params.
- First block is used to get dataset from one csv:
in_csv, train_folds, valid_folds, infer_folds, seed, n_folds
- Second includes paths to different csv for train/valid and infer parts:
in_csv_train, in_csv_valid, in_csv_infer
- The other params (tag2class, tag_column, class_column) are optional
for any previous block
- Parameters
in_csv (str) – paths to whole dataset
train_folds (List[int]) – train folds
valid_folds (List[int], optional) – valid folds. If none takes all folds not included in
train_folds
infer_folds (List[int], optional) – infer folds. If none takes all folds not included in
train_folds
andvalid_folds
seed (int) – seed for split
n_folds (int) – number of folds
in_csv_train (str) – paths to train csv separated by commas
in_csv_valid (str) – paths to valid csv separated by commas
in_csv_infer (str) – paths to infer csv separated by commas
tag2class (Dict[str, int]) – mapping from label names into ints
tag_column (str) – column with label names
class_column (str) – column to use for split
- Returns
tuple with 4 elements (whole dataframe, list with train data, list with valid data and list with infer data)
- Return type
(Tuple[pd.DataFrame, List[dict], List[dict], List[dict]])
-
catalyst.utils.pandas.
read_multiple_dataframes
(in_csv_train: str = None, in_csv_valid: str = None, in_csv_infer: str = None, tag2class: Optional[Dict[str, int]] = None, class_column: str = None, tag_column: str = None) → Tuple[pandas.core.frame.DataFrame, pandas.core.frame.DataFrame, pandas.core.frame.DataFrame, pandas.core.frame.DataFrame][source]¶ This function reads train/valid/infer dataframes from giving paths :param in_csv_train: paths to train csv separated by commas :type in_csv_train: str :param in_csv_valid: paths to valid csv separated by commas :type in_csv_valid: str :param in_csv_infer: paths to infer csv separated by commas :type in_csv_infer: str :param tag2class: mapping from label names into int :type tag2class: Dict[str, int], optional :param tag_column: column with label names :type tag_column: str, optional :param class_column: column to use for split :type class_column: str, optional
- Returns
- tuple with 4 dataframes
whole dataframe, train part, valid part and infer part
- Return type
(tuple)
-
catalyst.utils.pandas.
split_dataframe
(dataframe: pandas.core.frame.DataFrame, train_folds: List[int], valid_folds: Optional[List[int]] = None, infer_folds: Optional[List[int]] = None, tag2class: Optional[Dict[str, int]] = None, tag_column: str = None, class_column: str = None, seed: int = 42, n_folds: int = 5) → Tuple[pandas.core.frame.DataFrame, pandas.core.frame.DataFrame, pandas.core.frame.DataFrame, pandas.core.frame.DataFrame][source]¶ Split a Pandas DataFrame into folds.
- Parameters
dataframe (pd.DataFrame) – input dataframe
train_folds (List[int]) – train folds
valid_folds (List[int], optional) – valid folds. If none takes all folds not included in
train_folds
infer_folds (List[int], optional) – infer folds. If none takes all folds not included in
train_folds
andvalid_folds
tag2class (Dict[str, int], optional) – mapping from label names into int
tag_column (str, optional) – column with label names
class_column (str, optional) – column to use for split
seed (int) – seed for split
n_folds (int) – number of folds
- Returns
- tuple with 4 dataframes
whole dataframe, train part, valid part and infer part
- Return type
(tuple)
-
catalyst.utils.plotly.
plot_tensorboard_log
(logdir: Union[str, pathlib.Path], step: Optional[str] = 'batch', metrics: Optional[List[str]] = None, height: Optional[int] = None, width: Optional[int] = None) → None[source]¶
-
class
catalyst.utils.seed.
Seeder
(init_seed: int = 0, max_seed: int = None)[source]¶ A random seed generator.
Given an initial seed, the seeder can be called continuously to sample a single or a batch of random seeds.
Note
The seeder creates an independent RandomState to generate random numbers. It does not affect the RandomState in
np.random
.- Example::
>>> seeder = Seeder(init_seed=0) >>> seeder(size=5) [209652396, 398764591, 924231285, 1478610112, 441365315]
-
catalyst.utils.seed.
set_global_seed
(seed: int) → None[source]¶ Sets random seed into PyTorch, TensorFlow, Numpy and Random.
- Parameters
seed – random seed
-
catalyst.utils.serialization.
deserialize
(data)¶ Deserialize bytes into an object using pickle
- Parameters
bytes – a bytes object containing serialized with pickle data.
- Returns
Returns a value deserialized from the bytes-like object.
-
catalyst.utils.serialization.
pickle_deserialize
(data)[source]¶ Deserialize bytes into an object using pickle
- Parameters
bytes – a bytes object containing serialized with pickle data.
- Returns
Returns a value deserialized from the bytes-like object.
-
catalyst.utils.serialization.
pickle_serialize
(data)[source]¶ Serialize the data into bytes using pickle
- Parameters
data – a value
- Returns
Returns a bytes object serialized with pickle data.
-
catalyst.utils.serialization.
pyarrow_deserialize
(data)[source]¶ Deserialize bytes into an object using pyarrow
- Parameters
bytes – a bytes object containing serialized with pyarrow data.
- Returns
Returns a value deserialized from the bytes-like object.
-
catalyst.utils.serialization.
pyarrow_serialize
(data)[source]¶ Serialize the data into bytes using pyarrow
- Parameters
data – a value
- Returns
Returns a bytes object serialized with pyarrow data.
-
catalyst.utils.serialization.
serialize
(data)¶ Serialize the data into bytes using pickle
- Parameters
data – a value
- Returns
Returns a bytes object serialized with pickle data.
-
exception
catalyst.utils.tensorboard.
EventReadingError
[source]¶ An exception that correspond to an event file reading error
-
class
catalyst.utils.tensorboard.
EventsFileReader
(events_file: BinaryIO)[source]¶ An iterator over a Tensorboard events file
-
class
catalyst.utils.tensorboard.
SummaryItem
(tag, step, wall_time, value, type)¶ -
property
step
¶ Alias for field number 1
-
property
tag
¶ Alias for field number 0
-
property
type
¶ Alias for field number 4
-
property
value
¶ Alias for field number 3
-
property
wall_time
¶ Alias for field number 2
-
property
-
class
catalyst.utils.tensorboard.
SummaryReader
(logdir: Union[str, pathlib.Path], tag_filter: Optional[collections.abc.Iterable] = None, types: collections.abc.Iterable = ('scalar',))[source]¶ Iterates over events in all the files in the current logdir. Only scalars and images are supported at the moment.
-
__init__
(logdir: Union[str, pathlib.Path], tag_filter: Optional[collections.abc.Iterable] = None, types: collections.abc.Iterable = ('scalar',))[source]¶ Initalize new summary reader
- Parameters
logdir – A directory with Tensorboard summary data
tag_filter – A list of tags to leave (None for all)
types – A list of types to get.
"scalar" and "image" types are allowed at the moment. (Only) –
-
-
catalyst.utils.torch.
log1p_exp
(x)[source]¶ Computationally stable function for computing log(1+exp(x)).
-
catalyst.utils.torch.
normal_sample
(mu, sigma)[source]¶ Sample from multivariate Gaussian distribution z ~ N(z|mu,sigma) while supporting backpropagation through its mean and variance.
-
catalyst.utils.torch.
normal_logprob
(mu, sigma, z)[source]¶ Probability density function of multivariate Gaussian distribution N(z|mu,sigma).
-
catalyst.utils.torch.
get_optimizer_momentum
(optimizer: torch.optim.optimizer.Optimizer) → float[source]¶ Get momentum of current optimizer.
- Parameters
optimizer – PyTorch optimizer
- Returns
momentum at first param group
- Return type
float
-
catalyst.utils.torch.
set_optimizer_momentum
(optimizer: torch.optim.optimizer.Optimizer, value: float, index: int = 0)[source]¶ Set momentum of
index
‘th param group of optimizer tovalue
- Parameters
optimizer – PyTorch optimizer
value (float) – new value of momentum
index (int, optional) – integer index of optimizer’s param groups, default is 0
-
catalyst.utils.torch.
get_available_gpus
()[source]¶ Array of available GPU ids :returns: available GPU ids :rtype: iterable
Examples
>>> os.environ["CUDA_VISIBLE_DEVICES"] = "0,2" >>> get_available_gpus() >>> [0, 2]
>>> os.environ["CUDA_VISIBLE_DEVICES"] = "0,-1,1" >>> get_available_gpus() >>> [0]
>>> os.environ["CUDA_VISIBLE_DEVICES"] = "" >>> get_available_gpus() >>> []
>>> os.environ["CUDA_VISIBLE_DEVICES"] = "-1" >>> get_available_gpus() >>> []
-
catalyst.utils.torch.
any2device
(value, device)[source]¶ Move tensor, list of tensors, list of list of tensors, dict of tensors, tuple of tensors to target device. :param value: Object to be moved :param device: target device ids :return: Save data structure holding tensors on target device
-
catalyst.utils.torch.
prepare_cudnn
(deterministic: bool = None, benchmark: bool = None) → None[source]¶ Prepares CuDNN benchmark and sets CuDNN to be deterministic/non-deterministic mode
- Parameters
deterministic (bool) – deterministic mode if running in CuDNN backend.
benchmark (bool) – If
True
use CuDNN heuristics to figure out which algorithm will be most performant for your model architecture and input. Setting it toFalse
may slow down your training.
-
catalyst.utils.torch.
process_model_params
(model: torch.nn.modules.module.Module, layerwise_params: Dict[str, dict] = None, no_bias_weight_decay: bool = True, lr_scaling: float = 1.0) → List[Union[torch.nn.parameter.Parameter, dict]][source]¶ Gains model parameters for
torch.optim.Optimizer
- Parameters
model (torch.nn.Module) – Model to process
layerwise_params (Dict) – Order-sensitive dict where each key is regex pattern and values are layer-wise options for layers matching with a pattern
no_bias_weight_decay (bool) – If true, removes weight_decay for all
bias
parameters in the modellr_scaling (float) – layer-wise learning rate scaling, if 1.0, learning rates will not be scaled
- Returns
parameters for an optimizer
- Return type
iterable
Examples
>>> model = catalyst.contrib.models.segmentation.ResnetUnet() >>> layerwise_params = collections.OrderedDict([ >>> ("conv1.*", dict(lr=0.001, weight_decay=0.0003)), >>> ("conv.*", dict(lr=0.002)) >>> ]) >>> params = process_model_params(model, layerwise_params) >>> optimizer = torch.optim.Adam(params, lr=0.0003)
-
catalyst.utils.torch.
set_requires_grad
(model: torch.nn.modules.module.Module, requires_grad: bool)[source]¶ Sets the
requires_grad
value for all model parameters.- Parameters
model (torch.nn.Module) – Model
requires_grad (bool) – value
Examples
>>> model = SimpleModel() >>> set_requires_grad(model, requires_grad=True)
-
catalyst.utils.torch.
get_network_output
(net: torch.nn.modules.module.Module, *input_shapes)[source]¶
-
catalyst.utils.visualization.
plot_confusion_matrix
(cm, class_names=None, normalize=False, title='confusion matrix', fname=None, show=True, figsize=12, fontsize=32, colormap='Blues')[source]¶ Render the confusion matrix and return matplotlib”s figure with it. Normalization can be applied by setting normalize=True.