Source code for catalyst.dl.callbacks.scheduler
from catalyst.core.callbacks import LRUpdater
from catalyst.dl import State
[docs]class LRFinder(LRUpdater):
"""
Helps you find an optimal learning rate for a model,
as per suggestion of 2015 CLR paper.
Learning rate is increased in linear or log scale, depending on user input.
https://sgugger.github.io/how-do-you-find-a-good-learning-rate.html
"""
[docs] def __init__(
self, final_lr, scale="log", num_steps=None, optimizer_key=None
):
"""
Args:
final_lr: final learning rate to try with
scale: learning rate increasing scale ("log" or "linear")
num_steps: number of batches to try;
if None - whole loader would be used.
optimizer_key: which optimizer key to use
for learning rate scheduling
"""
super().__init__(optimizer_key=optimizer_key)
self.final_lr = final_lr
self.scale = scale
self.num_steps = num_steps
self.multiplier = 0
self.lr_step = 0
self.find_iter = 0
self._calc_lr = None
if scale == "log":
self._calc_lr = self._calc_lr_log
elif scale == "linear":
self._calc_lr = self._calc_lr_linear
else:
raise Exception("Not supported")
def _calc_lr_log(self):
return self.init_lr * self.multiplier**self.find_iter
def _calc_lr_linear(self):
return self.init_lr + self.lr_step * self.find_iter
[docs] def calc_lr(self):
res = self._calc_lr()
self.find_iter += 1
return res
[docs] def on_loader_start(self, state: State):
if state.need_backward:
lr_ = self.final_lr / self.init_lr
self.num_steps = self.num_steps or state.loader_len
self.multiplier = lr_**(1 / self.num_steps)
self.lr_step = (self.final_lr - self.init_lr) / self.num_steps
super().on_loader_start(state=state)
[docs] def on_batch_end(self, state: State):
super().on_batch_end(state=state)
if self.find_iter > self.num_steps:
raise NotImplementedError("End of LRFinder")
__all__ = ["LRFinder"]