Source code for catalyst.dl.meters.aucmeter
import numbers
import numpy as np
import torch
from . import meter
[docs]class AUCMeter(meter.Meter):
"""
The AUCMeter measures the area under the receiver-operating characteristic
(ROC) curve for binary classification problems. The area under the curve
(AUC) can be interpreted as the probability that, given a randomly selected
positive example and a randomly selected negative example, the positive
example is assigned a higher score by the classification model than the
negative example.
The AUCMeter is designed to operate on one-dimensional Tensors `output`
and `target`, where (1) the `output` contains model output scores that
ought to be higher when the model is more convinced that the example
should be positively labeled, and smaller when the model believes the
example should be negatively labeled (for instance, the output of a
signoid function); and (2) the `target` contains only values 0 (for
negative examples) and 1 (for positive examples).
"""
def __init__(self):
super(AUCMeter, self).__init__()
self.reset()
[docs] def reset(self):
self.scores = torch.DoubleTensor(torch.DoubleStorage()).numpy()
self.targets = torch.LongTensor(torch.LongStorage()).numpy()
[docs] def add(self, output, target):
if torch.is_tensor(output):
output = output.cpu().squeeze().numpy()
if torch.is_tensor(target):
target = target.cpu().squeeze().numpy()
elif isinstance(target, numbers.Number):
target = np.asarray([target])
assert np.ndim(output) == 1, \
"wrong output size (1D expected)"
assert np.ndim(target) == 1, \
"wrong target size (1D expected)"
assert output.shape[0] == target.shape[0], \
"number of outputs and targets does not match"
assert np.all(np.add(np.equal(target, 1), np.equal(target, 0))), \
"targets should be binary (0, 1)"
self.scores = np.append(self.scores, output)
self.targets = np.append(self.targets, target)
[docs] def value(self):
# case when number of elements added are 0
if self.scores.shape[0] == 0:
return 0.5
# sorting the arrays
scores, sortind = torch.sort(torch.from_numpy(
self.scores), dim=0, descending=True)
scores = scores.numpy()
sortind = sortind.numpy()
# creating the roc curve
tpr = np.zeros(shape=(scores.size + 1), dtype=np.float64)
fpr = np.zeros(shape=(scores.size + 1), dtype=np.float64)
for i in range(1, scores.size + 1):
if self.targets[sortind[i - 1]] == 1:
tpr[i] = tpr[i - 1] + 1
fpr[i] = fpr[i - 1]
else:
tpr[i] = tpr[i - 1]
fpr[i] = fpr[i - 1] + 1
tpr /= (self.targets.sum() * 1.0)
fpr /= ((self.targets - 1.0).sum() * -1.0)
# calculating area under curve using trapezoidal rule
n = tpr.shape[0]
h = fpr[1:n] - fpr[0:n - 1]
sum_h = np.zeros(fpr.shape)
sum_h[0:n - 1] = h
sum_h[1:n] += h
area = (sum_h * tpr).sum() / 2.0
return (area, tpr, fpr)