Source code for catalyst.contrib.nn.optimizers.lamb
import collections
import torch
from torch.optim.optimizer import Optimizer
[docs]def log_lamb_rs(
optimizer: Optimizer,
event_writer,
token_count: int
):
"""Log a histogram of trust ratio scalars in across layers."""
results = collections.defaultdict(list)
for group in optimizer.param_groups:
for p in group["params"]:
state = optimizer.state[p]
for i in ("weight_norm", "adam_norm", "trust_ratio"):
if i in state:
results[i].append(state[i])
for k, v in results.items():
event_writer.add_histogram(f"lamb/{k}", torch.tensor(v), token_count)
[docs]class Lamb(Optimizer):
"""Lamb optimizer"""
[docs] def __init__(
self,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-6,
weight_decay=0,
adam=False
):
"""Implements Lamb algorithm from `Training BERT in 76 minutes`_.
Args:
params (iterable): iterable of parameters to optimize or dicts
defining parameter groups
lr (float, optional): learning rate (default: 1e-3)
betas (Tuple[float, float], optional): coefficients used for
computing running averages of gradient
and its square (default: (0.9, 0.999))
eps (float, optional): term added to the denominator to improve
numerical stability (default: 1e-8)
weight_decay (float, optional): weight decay (L2 penalty)
(default: 0)
adam (bool, optional): always use trust ratio = 1, which turns
this into Adam. Useful for comparison purposes.
.. _`Training BERT in 76 minutes`:
https://arxiv.org/abs/1904.00962
"""
if not 0.0 <= lr:
raise ValueError(f"Invalid learning rate: {lr}")
if not 0.0 <= eps:
raise ValueError(f"Invalid epsilon value: {eps}")
if not 0.0 <= betas[0] < 1.0:
raise ValueError(f"Invalid beta parameter at index 0: {betas[0]}")
if not 0.0 <= betas[1] < 1.0:
raise ValueError(f"Invalid beta parameter at index 1: {betas[1]}")
defaults = dict(lr=lr, betas=betas, eps=eps,
weight_decay=weight_decay)
self.adam = adam
super(Lamb, self).__init__(params, defaults)
[docs] def step(self, closure=None):
"""Makes optimizer step"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group["params"]:
if p.grad is None:
continue
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError(
"Lamb does not support sparse gradients, "
"consider SparseAdam instad.")
state = self.state[p]
# State initialization
if len(state) == 0:
state["step"] = 0
# Exponential moving average of gradient values
state["exp_avg"] = torch.zeros_like(p.data)
# Exponential moving average of squared gradient values
state["exp_avg_sq"] = torch.zeros_like(p.data)
exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"]
beta1, beta2 = group["betas"]
state["step"] += 1
# Decay the first and second moment
# running average coefficient
# m_t
exp_avg.mul_(beta1).add_(1 - beta1, grad)
# v_t
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
# Paper v3 does not use debiasing.
# bias_correction1 = 1 - beta1 ** state["step"]
# bias_correction2 = 1 - beta2 ** state["step"]
# Apply bias to lr to avoid broadcast.
# * math.sqrt(bias_correction2) / bias_correction1
step_size = group["lr"]
weight_norm = p.data.pow(2).sum().sqrt().clamp(0, 10)
adam_step = exp_avg / exp_avg_sq.sqrt().add(group["eps"])
if group["weight_decay"] != 0:
adam_step.add_(group["weight_decay"], p.data)
adam_norm = adam_step.pow(2).sum().sqrt()
if weight_norm == 0 or adam_norm == 0:
trust_ratio = 1
else:
trust_ratio = weight_norm / adam_norm
state["weight_norm"] = weight_norm
state["adam_norm"] = adam_norm
state["trust_ratio"] = trust_ratio
if self.adam:
trust_ratio = 1
p.data.add_(-step_size * trust_ratio, adam_step)
return loss