Source code for catalyst.contrib.nn.optimizers.ralamb
from typing import Tuple, Iterable # isort:skip
import math
import torch
from torch.optim.optimizer import Optimizer
[docs]class Ralamb(Optimizer):
"""
RAdam optimizer with LARS/LAMB tricks
Taken from https://github.com/mgrankin/over9000/blob/master/ralamb.py
"""
[docs] def __init__(
self,
params: Iterable,
lr: float = 1e-3,
betas: Tuple[float, float] = (0.9, 0.999),
eps: float = 1e-8,
weight_decay: float = 0
):
"""
Args:
params (iterable): iterable of parameters to optimize
or dicts defining parameter groups
lr (float, optional): learning rate (default: 1e-3)
betas (Tuple[float, float], optional): coefficients used for
computing running averages of gradient
and its square (default: (0.9, 0.999))
eps (float, optional): term added to the denominator to improve
numerical stability (default: 1e-8)
weight_decay (float, optional): weight decay
(L2 penalty) (default: 0)
"""
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
self.buffer = [[None, None, None] for ind in range(10)]
super(Ralamb, self).__init__(params, defaults)
def __setstate__(self, state):
"""Sets state"""
super(Ralamb, self).__setstate__(state)
[docs] def step(self, closure=None):
"""Makes optimizer step"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group["params"]:
if p.grad is None:
continue
grad = p.grad.data.float()
if grad.is_sparse:
raise RuntimeError(
"Ralamb does not support sparse gradients"
)
p_data_fp32 = p.data.float()
state = self.state[p]
if len(state) == 0:
state["step"] = 0
state["exp_avg"] = torch.zeros_like(p_data_fp32)
state["exp_avg_sq"] = torch.zeros_like(p_data_fp32)
else:
state["exp_avg"] = state["exp_avg"].type_as(p_data_fp32)
state["exp_avg_sq"] = state["exp_avg_sq"].type_as(
p_data_fp32
)
exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"]
beta1, beta2 = group["betas"]
# Decay the first and second moment running average coefficient
# m_t
exp_avg.mul_(beta1).add_(1 - beta1, grad)
# v_t
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
state["step"] += 1
buffered = self.buffer[int(state["step"] % 10)]
if state["step"] == buffered[0]:
N_sma, radam_step_size = buffered[1], buffered[2]
else:
buffered[0] = state["step"]
beta2_t = beta2**state["step"]
N_sma_max = 2 / (1 - beta2) - 1
N_sma = N_sma_max - \
2 * state["step"] * beta2_t / (1 - beta2_t)
buffered[1] = N_sma
# more conservative since it"s an approximated value
if N_sma >= 5:
radam_step_size = \
math.sqrt(
(1 - beta2_t) * (N_sma - 4) / (N_sma_max - 4)
* (N_sma - 2) / N_sma
* N_sma_max / (N_sma_max - 2)
) / (1 - beta1 ** state["step"])
else:
radam_step_size = 1.0 / (1 - beta1**state["step"])
buffered[2] = radam_step_size
if group["weight_decay"] != 0:
p_data_fp32.add_(
-group["weight_decay"] * group["lr"], p_data_fp32
)
# more conservative since it"s an approximated value
radam_step = p_data_fp32.clone()
if N_sma >= 5:
denom = exp_avg_sq.sqrt().add_(group["eps"])
radam_step.addcdiv_(
-radam_step_size * group["lr"], exp_avg, denom
)
else:
radam_step.add_(-radam_step_size * group["lr"], exp_avg)
radam_norm = radam_step.pow(2).sum().sqrt()
weight_norm = p.data.pow(2).sum().sqrt().clamp(0, 10)
if weight_norm == 0 or radam_norm == 0:
trust_ratio = 1
else:
trust_ratio = weight_norm / radam_norm
state["weight_norm"] = weight_norm
state["adam_norm"] = radam_norm
state["trust_ratio"] = trust_ratio
if N_sma >= 5:
p_data_fp32.addcdiv_(
-radam_step_size * group["lr"] * trust_ratio, exp_avg,
denom
)
else:
p_data_fp32.add_(
-radam_step_size * group["lr"] * trust_ratio, exp_avg
)
p.data.copy_(p_data_fp32)
return loss