Source code for catalyst.rl.agent.head

from typing import List  # isort:skip

import torch
import torch.nn as nn

from catalyst.contrib.models import SequentialNet
from catalyst.utils import outer_init
from .policy import (
    BernoulliPolicy, CategoricalPolicy, DiagonalGaussPolicy, RealNVPPolicy,
    SquashingGaussPolicy
)


[docs]class ValueHead(nn.Module): @staticmethod def _build_head(in_features, out_features, num_atoms, bias): head = nn.Linear( in_features=in_features, out_features=out_features * num_atoms, bias=bias ) return head def __init__( self, in_features: int, out_features: int, bias: bool = True, num_atoms: int = 1, use_state_value_head: bool = False, distribution: str = None, values_range: tuple = None, num_heads: int = 1, hyperbolic_constant: float = 1.0 ): super().__init__() self.in_features = in_features self.out_features = out_features self.bias = bias self.num_atoms = num_atoms self.use_state_value_head = use_state_value_head self.distribution = distribution self.values_range = values_range self.num_heads = num_heads if self.num_heads == 1: hyperbolic_constant = 1.0 self.hyperbolic_constant = hyperbolic_constant if distribution is None: # mean case assert values_range is None and num_atoms == 1 elif distribution == "categorical": assert values_range is not None and num_atoms > 1 elif distribution == "quantile": assert values_range is None and num_atoms > 1 else: raise NotImplementedError() value_heads = [ self._build_head(in_features, out_features, num_atoms, bias) for _ in range(num_heads) ] self.value_heads = nn.ModuleList(value_heads) if self.use_state_value_head: assert self.out_features > 1, "Not implemented behaviour" state_value_heads = [ self._build_head(in_features, 1, num_atoms, bias) for _ in range(num_heads) ] self.state_value_heads = nn.ModuleList(state_value_heads) self.apply(outer_init)
[docs] def forward(self, state: torch.Tensor): x: List[torch.Tensor] = [] for net in self.value_heads: x.append(net(state).view(-1, self.out_features, self.num_atoms)) # batch_size(0) x num_heads(1) x num_outputs(2) x num_atoms(3) x = torch.stack(x, dim=1) if self.use_state_value_head: state_value: List[torch.Tensor] = [] for net in self.state_value_heads: state_value.append(net(state).view(-1, 1, self.num_atoms)) # batch_size(0) x num_heads(1) x num_outputs(2) x num_atoms(3) state_value = torch.stack(state_value, dim=1) x_mean = x.mean(2, keepdim=True) x = x - x_mean + state_value # batch_size(0) x num_heads(1) x num_outputs(2) x num_atoms(3) return x
[docs]class PolicyHead(nn.Module): def __init__( self, in_features: int, out_features: int, policy_type: str = None, out_activation: nn.Module = None ): super().__init__() assert policy_type in [ "categorical", "bernoulli", "diagonal-gauss", "squashing-gauss", "real-nvp", "logits", None ] # @TODO: refactor layer_fn = nn.Linear activation_fn = nn.ReLU squashing_fn = out_activation bias = True if policy_type == "categorical": assert out_activation is None head_size = out_features policy_net = CategoricalPolicy() elif policy_type == "bernoulli": assert out_activation is None head_size = out_features policy_net = BernoulliPolicy() elif policy_type == "diagonal-gauss": head_size = out_features * 2 policy_net = DiagonalGaussPolicy() elif policy_type == "squashing-gauss": out_activation = None head_size = out_features * 2 policy_net = SquashingGaussPolicy(squashing_fn) elif policy_type == "real-nvp": out_activation = None head_size = out_features * 2 policy_net = RealNVPPolicy( action_size=out_features, layer_fn=layer_fn, activation_fn=activation_fn, squashing_fn=squashing_fn, bias=bias ) else: head_size = out_features policy_net = None policy_type = "logits" self.policy_type = policy_type head_net = SequentialNet( hiddens=[in_features, head_size], layer_fn={ "module": layer_fn, "bias": True }, activation_fn=out_activation, norm_fn=None, ) head_net.apply(outer_init) self.head_net = head_net self.policy_net = policy_net self._policy_fn = None if policy_net is not None: self._policy_fn = policy_net.forward else: self._policy_fn = lambda *args: args[0]
[docs] def forward(self, state: torch.Tensor, logprob=None, deterministic=False): x = self.head_net(state) x = self._policy_fn(x, logprob, deterministic) return x
__all__ = ["ValueHead", "PolicyHead"]