Source code for catalyst.contrib.nn.criterion.iou
from functools import partial
import torch.nn as nn
from catalyst.utils import metrics
[docs]class IoULoss(nn.Module):
"""
Intersection over union (Jaccard) loss
Args:
eps (float): epsilon to avoid zero division
threshold (float): threshold for outputs binarization
activation (str): An torch.nn activation applied to the outputs.
Must be one of ['none', 'Sigmoid', 'Softmax2d']
"""
def __init__(
self,
eps: float = 1e-7,
threshold: float = None,
activation: str = "Sigmoid",
):
super().__init__()
self.metric_fn = partial(
metrics.iou, eps=eps, threshold=threshold, activation=activation
)
[docs] def forward(self, outputs, targets):
iou = self.metric_fn(outputs, targets)
return 1 - iou
[docs]class BCEIoULoss(nn.Module):
"""
Intersection over union (Jaccard) with BCE loss
Args:
eps (float): epsilon to avoid zero division
threshold (float): threshold for outputs binarization
activation (str): An torch.nn activation applied to the outputs.
Must be one of ['none', 'Sigmoid', 'Softmax2d']
reduction (str): Specifies the reduction to apply to the output of BCE
"""
def __init__(
self,
eps: float = 1e-7,
threshold: float = None,
activation: str = "Sigmoid",
reduction: str = "mean",
):
super().__init__()
self.bce_loss = nn.BCEWithLogitsLoss(reduction=reduction)
self.iou_loss = IoULoss(eps, threshold, activation)
[docs] def forward(self, outputs, targets):
iou = self.iou_loss.forward(outputs, targets)
bce = self.bce_loss(outputs, targets)
loss = iou + bce
return loss
__all__ = ["IoULoss", "BCEIoULoss"]