Shortcuts

Source code for catalyst.core.callbacks.logging

from typing import Dict, List  # isort:skip
import logging
import os
import sys

from tqdm import tqdm

from catalyst import utils
from catalyst.core import Callback, CallbackNode, CallbackOrder, State
from catalyst.utils.tools.tensorboard import SummaryWriter
from . import formatters


[docs]class VerboseLogger(Callback): """ Logs the params into console """
[docs] def __init__( self, always_show: List[str] = None, never_show: List[str] = None, ): """ Args: always_show (List[str]): list of metrics to always show if None default is ``["_timer/_fps"]`` to remove always_show metrics set it to an empty list ``[]`` never_show (List[str]): list of metrics which will not be shown """ super().__init__(order=CallbackOrder.Logging, node=CallbackNode.Master) self.tqdm: tqdm = None self.step = 0 self.always_show = ( always_show if always_show is not None else ["_timer/_fps"] ) self.never_show = never_show if never_show is not None else [] intersection = set(self.always_show) & set(self.never_show) _error_message = ( f"Intersection of always_show and " f"never_show has common values: {intersection}" ) if bool(intersection): raise ValueError(_error_message)
def _need_show(self, key: str): not_is_never_shown: bool = key not in self.never_show is_always_shown: bool = key in self.always_show not_basic = not (key.startswith("_base") or key.startswith("_timers")) result = not_is_never_shown and (is_always_shown or not_basic) return result
[docs] def on_loader_start(self, state: State): """Init tqdm progress bar""" self.step = 0 self.tqdm = tqdm( total=state.loader_len, desc=f"{state.epoch}/{state.num_epochs}" f" * Epoch ({state.loader_name})", leave=True, ncols=0, file=sys.stdout, )
[docs] def on_loader_end(self, state: State): """Cleanup and close tqdm progress bar""" self.tqdm.close() self.tqdm = None self.step = 0
[docs] def on_batch_end(self, state: State): """Update tqdm progress bar at the end of each batch""" self.tqdm.set_postfix( **{ k: "{:3.3f}".format(v) if v > 1e-3 else "{:1.3e}".format(v) for k, v in sorted(state.batch_metrics.items()) if self._need_show(k) } ) self.tqdm.update()
[docs] def on_exception(self, state: State): """Called if an Exception was raised""" exception = state.exception if not utils.is_exception(exception): return if isinstance(exception, KeyboardInterrupt): self.tqdm.write("Early exiting") state.need_exception_reraise = False
[docs]class ConsoleLogger(Callback): """ Logger callback, translates ``state.*_metrics`` to console and text file """
[docs] def __init__(self): """Init ``ConsoleLogger``""" super().__init__(order=CallbackOrder.Logging, node=CallbackNode.Master) self.logger = None
@staticmethod def _get_logger(logdir): logger = logging.getLogger("metrics_logger") logger.setLevel(logging.INFO) ch = logging.StreamHandler(sys.stdout) ch.setLevel(logging.INFO) txt_formatter = formatters.TxtMetricsFormatter() ch.setFormatter(txt_formatter) # add the handlers to the logger logger.addHandler(ch) if logdir: fh = logging.FileHandler(f"{logdir}/log.txt") fh.setLevel(logging.INFO) fh.setFormatter(txt_formatter) logger.addHandler(fh) # logger.addHandler(jh) return logger
[docs] def on_stage_start(self, state: State): """Prepare ``state.logdir`` for the current stage""" if state.logdir: state.logdir.mkdir(parents=True, exist_ok=True) self.logger = self._get_logger(state.logdir)
[docs] def on_stage_end(self, state: State): """Called at the end of each stage""" for handler in self.logger.handlers: handler.close() self.logger.handlers = []
[docs] def on_epoch_end(self, state: State): """ Translate ``state.metric_manager`` to console and text file at the end of an epoch """ self.logger.info("", extra={"state": state})
[docs]class TensorboardLogger(Callback): """ Logger callback, translates ``state.metric_manager`` to tensorboard """
[docs] def __init__( self, metric_names: List[str] = None, log_on_batch_end: bool = True, log_on_epoch_end: bool = True, ): """ Args: metric_names (List[str]): list of metric names to log, if none - logs everything log_on_batch_end (bool): logs per-batch metrics if set True log_on_epoch_end (bool): logs per-epoch metrics if set True """ super().__init__(order=CallbackOrder.Logging, node=CallbackNode.Master) self.metrics_to_log = metric_names self.log_on_batch_end = log_on_batch_end self.log_on_epoch_end = log_on_epoch_end if not (self.log_on_batch_end or self.log_on_epoch_end): raise ValueError("You have to log something!") self.loggers = dict()
def _log_metrics( self, metrics: Dict[str, float], step: int, mode: str, suffix="" ): if self.metrics_to_log is None: metrics_to_log = sorted(list(metrics.keys())) else: metrics_to_log = self.metrics_to_log for name in metrics_to_log: if name in metrics: self.loggers[mode].add_scalar( f"{name}{suffix}", metrics[name], step )
[docs] def on_stage_start(self, state: State): assert state.logdir is not None extra_mode = "_base" log_dir = os.path.join(state.logdir, f"{extra_mode}_log") self.loggers[extra_mode] = SummaryWriter(log_dir)
[docs] def on_loader_start(self, state: State): """Prepare tensorboard writers for the current stage""" if state.loader_name not in self.loggers: log_dir = os.path.join(state.logdir, f"{state.loader_name}_log") self.loggers[state.loader_name] = SummaryWriter(log_dir)
[docs] def on_batch_end(self, state: State): """Translate batch metrics to tensorboard""" if state.logdir is None: return if self.log_on_batch_end: mode = state.loader_name metrics_ = state.batch_metrics self._log_metrics( metrics=metrics_, step=state.global_step, mode=mode, suffix="/batch" )
[docs] def on_epoch_end(self, state: "State"): """Translate epoch metrics to tensorboard""" if state.logdir is None: return if self.log_on_epoch_end: per_mode_metrics = utils.split_dict_to_subdicts( dct=state.epoch_metrics, prefixes=list(state.loaders.keys()), extra_key="_base", ) for mode, metrics in per_mode_metrics.items(): # suffix = "" if mode == "_base" else "/epoch" self._log_metrics( metrics=metrics, step=state.global_epoch, mode=mode, suffix="/epoch", ) for logger in self.loggers.values(): logger.flush()
[docs] def on_stage_end(self, state: State): """Close opened tensorboard writers""" if state.logdir is None: return for logger in self.loggers.values(): logger.close()
__all__ = [ "ConsoleLogger", "TensorboardLogger", "VerboseLogger", ]