Shortcuts

Source code for catalyst.dl.runner.supervised

from typing import Any, Callable, Dict, List, Mapping, Tuple, Union
from collections import OrderedDict
import logging
from pathlib import Path

import torch
from torch.jit import ScriptModule
from torch.utils.data import DataLoader

from catalyst.dl import (
    Callback,
    CheckpointCallback,
    InferCallback,
    State,
    SupervisedExperiment,
    utils,
)
from catalyst.utils.tools.typing import Device, Model

from .core import Runner

logger = logging.getLogger(__name__)


[docs]class SupervisedRunner(Runner): """Runner for experiments with supervised model.""" _experiment_fn: Callable = SupervisedExperiment
[docs] def __init__( self, model: Model = None, device: Device = None, input_key: Any = "features", output_key: Any = "logits", input_target_key: str = "targets", ): """ Args: model (Module): Torch model object device (Device): Torch device input_key (Any): Key in batch dict mapping for model input output_key (Any): Key in output dict model output will be stored under input_target_key (str): Key in batch dict mapping for target """ super().__init__(model=model, device=device) self.input_key = input_key self.output_key = output_key self.target_key = input_target_key if isinstance(self.input_key, str): # when model expects value self._process_input = self._process_input_str elif isinstance(self.input_key, (list, tuple)): # when model expects tuple self._process_input = self._process_input_list elif self.input_key is None: # when model expects dict self._process_input = self._process_input_none else: raise NotImplementedError() if isinstance(output_key, str): # when model returns value self._process_output = self._process_output_str elif isinstance(output_key, (list, tuple)): # when model returns tuple self._process_output = self._process_output_list elif self.output_key is None: # when model returns dict self._process_output = self._process_output_none else: raise NotImplementedError()
def _init(self): self.experiment: SupervisedExperiment = None self.state: State = None def _batch2device(self, batch: Mapping[str, Any], device: Device): if isinstance(batch, (tuple, list)): assert len(batch) == 2 batch = {self.input_key: batch[0], self.target_key: batch[1]} batch = super()._batch2device(batch, device) return batch def _process_input_str(self, batch: Mapping[str, Any], **kwargs): output = self.model(batch[self.input_key], **kwargs) return output def _process_input_list(self, batch: Mapping[str, Any], **kwargs): input = {key: batch[key] for key in self.input_key} output = self.model(**input, **kwargs) return output def _process_input_none(self, batch: Mapping[str, Any], **kwargs): output = self.model(**batch, **kwargs) return output def _process_output_str(self, output: torch.Tensor): output = {self.output_key: output} return output def _process_output_list(self, output: Union[Tuple, List]): output = {key: value for key, value in zip(self.output_key, output)} return output def _process_output_none(self, output: Mapping[str, Any]): return output
[docs] def forward(self, batch: Mapping[str, Any], **kwargs) -> Mapping[str, Any]: """ Forward method for your Runner. Should not be called directly outside of runner. If your model has specific interface, override this method to use it Args: batch (Mapping[str, Any]): dictionary with data batches from DataLoaders. **kwargs: additional parameters to pass to the model """ output = self._process_input(batch, **kwargs) output = self._process_output(output) return output
def _handle_batch(self, batch: Mapping[str, Any]) -> None: """ Inner method to handle specified data batch. Used to make a train/valid/infer step during Experiment run. Args: batch (Mapping[str, Any]): dictionary with data batches from DataLoader. """ self.state.batch_out = self.forward(batch)
[docs] @torch.no_grad() def predict_batch( self, batch: Mapping[str, Any], **kwargs ) -> Mapping[str, Any]: """ Run model inference on specified data batch. .. warning:: You should not override this method. If you need specific model call, override forward() method Args: batch (Mapping[str, Any]): dictionary with data batches from DataLoader. **kwargs: additional kwargs to pass to the model Returns: Mapping[str, Any]: model output dictionary """ batch = self._batch2device(batch, self.device) output = self.forward(batch, **kwargs) return output
[docs] def infer( self, model: Model, loaders: "OrderedDict[str, DataLoader]", callbacks: "Union[List[Callback], OrderedDict[str, Callback]]" = None, verbose: bool = False, state_kwargs: Dict = None, fp16: Union[Dict, bool] = None, check: bool = False, ) -> None: """ Makes the inference on the model. Args: model (Model): model to infer loaders (dict): dictionary containing one or several ``torch.utils.data.DataLoader`` for inference callbacks (List[catalyst.dl.Callback]): list of inference callbacks verbose (bool): ff true, it displays the status of the inference to the console. state_kwargs (dict): additional state params to ``State`` fp16 (Union[Dict, bool]): If not None, then sets inference to FP16. See https://nvidia.github.io/apex/amp.html#properties if fp16=True, params by default will be ``{"opt_level": "O1"}`` check (bool): if True, then only checks that pipeline is working (3 epochs only) """ if isinstance(fp16, bool) and fp16: fp16 = {"opt_level": "O1"} experiment = self._experiment_fn( stage="infer", model=model, loaders=loaders, callbacks=callbacks, verbose=verbose, check_run=check, state_kwargs=state_kwargs, distributed_params=fp16, ) self.run_experiment(experiment)
[docs] def predict_loader( self, model: Model, loader: DataLoader, resume: str = None, verbose: bool = False, state_kwargs: Dict = None, fp16: Union[Dict, bool] = None, check: bool = False, ) -> Any: """ Makes a prediction on the whole loader with the specified model. Args: model (Model): model to infer loader (DataLoader): dictionary containing only one ``torch.utils.data.DataLoader`` for inference resume (str): path to checkpoint for model verbose (bool): ff true, it displays the status of the inference to the console. state_kwargs (dict): additional state params to ``State`` fp16 (Union[Dict, bool]): If not None, then sets inference to FP16. See https://nvidia.github.io/apex/amp.html#properties if fp16=True, params by default will be ``{"opt_level": "O1"}`` check (bool): if True, then only checks that pipeline is working (3 epochs only) """ loaders = OrderedDict([("infer", loader)]) callbacks = OrderedDict([("inference", InferCallback())]) if resume is not None: callbacks["loader"] = CheckpointCallback(resume=resume) self.infer( model=model, loaders=loaders, callbacks=callbacks, verbose=verbose, state_kwargs=state_kwargs, fp16=fp16, check=check, ) output = callbacks["inference"].predictions if isinstance(self.output_key, str): output = output[self.output_key] return output
[docs] def trace( self, model: Model = None, batch=None, logdir: str = None, loader: DataLoader = None, method_name: str = "forward", mode: str = "eval", requires_grad: bool = False, fp16: Union[Dict, bool] = None, device: Device = "cpu", predict_params: dict = None, ) -> ScriptModule: """ Traces model using Torch Jit. Args: model (Model): model to trace batch: batch to forward through the model to trace logdir (str, optional): If specified, the result will be written to the directory loader (DataLoader, optional): if batch is not specified, the batch will be ``next(iter(loader))`` method_name (str): model's method name that will be traced mode (str): ``train`` or ``eval`` requires_grad (bool): flag to trace with gradients fp16 (Union[Dict, bool]): If not None, then sets tracing params to FP16 device (Device): Torch deivice or a string predict_params (dict): additional parameters for model forward """ if batch is None: if loader is None: raise ValueError( "If batch is not provided the loader must be specified" ) batch = next(iter(loader)) if model is not None: self.model = model if isinstance(fp16, bool) and fp16: opt_level = "O1" elif isinstance(fp16, bool) and not fp16: opt_level = None elif isinstance(fp16, dict): opt_level = fp16["opt_level"] else: opt_level = fp16 if opt_level is not None: device = "cuda" elif device is None: if self.device is None: self.device = utils.get_device() device = self.device result = utils.trace_model( model=self.model, runner=self, batch=batch, method_name=method_name, mode=mode, requires_grad=requires_grad, opt_level=opt_level, device=device, predict_params=predict_params, ) if logdir is not None: filename = utils.get_trace_name( method_name=method_name, mode=mode, requires_grad=requires_grad, opt_level=opt_level, ) logdir = Path(logdir) output: Path = logdir / "trace" output.mkdir(exist_ok=True, parents=True) out_model = str(output / filename) torch.jit.save(result, out_model) return result
__all__ = ["SupervisedRunner"]