Source code for catalyst.contrib.nn.criterion.iou
from functools import partial
from torch import nn
from catalyst.utils import metrics
[docs]class IoULoss(nn.Module):
"""The intersection over union (Jaccard) loss.
@TODO: Docs. Contribution is welcome.
"""
[docs] def __init__(
self,
eps: float = 1e-7,
threshold: float = None,
activation: str = "Sigmoid",
):
"""
Args:
eps (float): epsilon to avoid zero division
threshold (float): threshold for outputs binarization
activation (str): An torch.nn activation applied to the outputs.
Must be one of ``'none'``, ``'Sigmoid'``, ``'Softmax2d'``
"""
super().__init__()
self.metric_fn = partial(
metrics.iou, eps=eps, threshold=threshold, activation=activation
)
[docs] def forward(self, outputs, targets):
"""@TODO: Docs. Contribution is welcome."""
iou = self.metric_fn(outputs, targets)
return 1 - iou
[docs]class BCEIoULoss(nn.Module):
"""The Intersection over union (Jaccard) with BCE loss.
@TODO: Docs. Contribution is welcome.
"""
[docs] def __init__(
self,
eps: float = 1e-7,
threshold: float = None,
activation: str = "Sigmoid",
reduction: str = "mean",
):
"""
Args:
eps (float): epsilon to avoid zero division
threshold (float): threshold for outputs binarization
activation (str): An torch.nn activation applied to the outputs.
Must be one of ``'none'``, ``'Sigmoid'``, ``'Softmax2d'``
reduction (str): Specifies the reduction to apply
to the output of BCE
"""
super().__init__()
self.bce_loss = nn.BCEWithLogitsLoss(reduction=reduction)
self.iou_loss = IoULoss(eps, threshold, activation)
[docs] def forward(self, outputs, targets):
"""@TODO: Docs. Contribution is welcome."""
iou = self.iou_loss.forward(outputs, targets)
bce = self.bce_loss(outputs, targets)
loss = iou + bce
return loss
__all__ = ["IoULoss", "BCEIoULoss"]