Shortcuts

Source code for catalyst.utils.meters.aucmeter

"""
The AUCMeter measures the area under the receiver-operating characteristic
(ROC) curve for binary classification problems. The area under the curve
(AUC) can be interpreted as the probability that, given a randomly selected
positive     example and a randomly selected negative example, the positive
example is assigned a higher score by the classification model than the
negative example.
"""
import numbers

import numpy as np

import torch

from . import meter


[docs]class AUCMeter(meter.Meter): """ The AUCMeter is designed to operate on one-dimensional Tensors `output` and `target`, where: 1. The `output` contains model output scores that ought to be higher when the model is more convinced that the example should be positively labeled, and smaller when the model believes the example should be negatively labeled (for instance, the output of a sigmoid function) 2. The `target` contains only values 0 (for negative examples) and 1 (for positive examples). """
[docs] def __init__(self): """Constructor method for the ``AUCMeter`` class.""" super(AUCMeter, self).__init__() self.reset()
[docs] def reset(self) -> None: """Reset stored scores and targets.""" self.scores = torch.DoubleTensor(torch.DoubleStorage()).numpy() self.targets = torch.LongTensor(torch.LongStorage()).numpy()
[docs] def add(self, output: torch.Tensor, target: torch.Tensor) -> None: """Update stored scores and targets. Args: output (Tensor): one-dimensional tensor `output` target (Tensor): one-dimensional tensor `target` """ if torch.is_tensor(output): output = output.cpu().squeeze().numpy() if torch.is_tensor(target): target = target.cpu().squeeze().numpy() elif isinstance(target, numbers.Number): target = np.asarray([target]) assert np.ndim(output) == 1, "wrong output size (1D expected)" assert np.ndim(target) == 1, "wrong target size (1D expected)" assert ( output.shape[0] == target.shape[0] ), "number of outputs and targets does not match" assert np.all( np.add(np.equal(target, 1), np.equal(target, 0)) ), "targets should be binary (0, 1)" self.scores = np.append(self.scores, output) self.targets = np.append(self.targets, target)
[docs] def value(self): """Return metric values of AUC, TPR and FPR. Returns: tuple of floats: (AUC, TPR, FPR) """ # case when number of elements added are 0 if self.scores.shape[0] == 0: return 0.5 # sorting the arrays scores, sortind = torch.sort( torch.from_numpy(self.scores), dim=0, descending=True ) scores = scores.numpy() sortind = sortind.numpy() # creating the roc curve tpr = np.zeros(shape=(scores.size + 1), dtype=np.float64) fpr = np.zeros(shape=(scores.size + 1), dtype=np.float64) for i in range(1, scores.size + 1): if self.targets[sortind[i - 1]] == 1: tpr[i] = tpr[i - 1] + 1 fpr[i] = fpr[i - 1] else: tpr[i] = tpr[i - 1] fpr[i] = fpr[i - 1] + 1 tpr /= self.targets.sum() * 1.0 fpr /= (self.targets - 1.0).sum() * -1.0 # calculating area under curve using trapezoidal rule n = tpr.shape[0] h = fpr[1:n] - fpr[0 : n - 1] sum_h = np.zeros(fpr.shape) sum_h[0 : n - 1] = h sum_h[1:n] += h area = (sum_h * tpr).sum() / 2.0 return (area, tpr, fpr)