Utilities¶
Utils¶
All utils are gathered in catalyst.utils
for easier access.
Note
Everything from catalyst.contrib.utils
is included in catalyst.utils
Checkpoint¶
-
catalyst.utils.checkpoint.
pack_checkpoint
(model=None, criterion=None, optimizer=None, scheduler=None, **kwargs)[source]¶ @TODO: Docs. Contribution is welcome.
-
catalyst.utils.checkpoint.
unpack_checkpoint
(checkpoint, model=None, criterion=None, optimizer=None, scheduler=None)[source]¶ @TODO: Docs. Contribution is welcome.
Config¶
-
catalyst.utils.config.
load_config
(path: Union[str, pathlib.Path], ordered: bool = False, data_format: str = None, encoding: str = 'utf-8') → Union[Dict, List][source]¶ Loads config by giving path. Supports YAML and JSON files.
Examples
>>> load(path="./config.yml", ordered=True)
- Parameters
path (str) – path to config file (YAML or JSON)
ordered (bool) – if true the config will be loaded as
OrderedDict
data_format (str) –
yaml
,yml
orjson
.encoding (str) – encoding to read the config
- Returns
config
- Return type
(Union[Dict, List])
- Raises
Exception – if path
path
doesn’t exists or file format is not YAML or JSON
-
catalyst.utils.config.
save_config
(config: Union[Dict, List], path: Union[str, pathlib.Path], data_format: str = None, encoding: str = 'utf-8', ensure_ascii: bool = False, indent: int = 2) → None[source]¶ Saves config to file. Path must be either YAML or JSON.
- Parameters
config (Union[Dict, List]) – config to save
path (Union[str, Path]) – path to save
data_format (str) –
yaml
,yml
orjson
.encoding (str) – Encoding to write file. Default is
utf-8
ensure_ascii (bool) – Used for JSON, if True non-ASCII
are escaped in JSON strings. (characters) –
indent (int) – Used for JSON
Distributed¶
-
catalyst.utils.distributed.
check_ddp_wrapped
(model: torch.nn.modules.module.Module) → bool[source]¶ Checks whether model is wrapped with DataParallel/DistributedDataParallel.
-
catalyst.utils.distributed.
check_torch_distributed_initialized
() → bool[source]¶ Checks if torch.distributed is available and initialized.
-
catalyst.utils.distributed.
assert_fp16_available
() → None[source]¶ Asserts for installed and available Apex FP16.
-
catalyst.utils.distributed.
initialize_apex
(model, optimizer=None, **distributed_params)[source]¶ @TODO: Docs. Contribution is welcome.
-
catalyst.utils.distributed.
get_nn_from_ddp_module
(model: torch.nn.modules.module.Module) → torch.nn.modules.module.Module[source]¶ Return a real model from a torch.nn.DataParallel, torch.nn.parallel.DistributedDataParallel, or apex.parallel.DistributedDataParallel.
- Parameters
model – A model, or DataParallel wrapper.
- Returns
A model
-
catalyst.utils.distributed.
get_rank
() → int[source]¶ Returns the rank of the current worker.
- Returns
rank
if torch.distributed is initialized, otherwise-1
- Return type
(int)
-
catalyst.utils.distributed.
get_distributed_mean
(value: Union[float, torch.Tensor])[source]¶ Computes distributed mean among all nodes.
-
catalyst.utils.distributed.
get_distributed_env
(local_rank, rank, world_size, use_cuda_visible_devices=True)[source]¶ @TODO: Docs. Contribution is welcome.
-
catalyst.utils.distributed.
process_components
(model: torch.nn.modules.module.Module, criterion: torch.nn.modules.module.Module = None, optimizer: torch.optim.optimizer.Optimizer = None, scheduler: torch.optim.lr_scheduler._LRScheduler = None, distributed_params: Dict = None, device: Union[str, torch.device] = None) → Tuple[torch.nn.modules.module.Module, torch.nn.modules.module.Module, torch.optim.optimizer.Optimizer, torch.optim.lr_scheduler._LRScheduler, Union[str, torch.device]][source]¶ Returns the processed model, criterion, optimizer, scheduler and device.
- Parameters
model (Model) – torch model
criterion (Criterion) – criterion function
optimizer (Optimizer) – optimizer
scheduler (Scheduler) – scheduler
distributed_params (dict, optional) – dict with the parameters for distributed and FP16 method
device (Device, optional) – device
-
catalyst.utils.distributed.
is_wrapped_with_ddp
(model: torch.nn.modules.module.Module) → bool[source]¶ Checks whether model is wrapped with DataParallel/DistributedDataParallel.
Deprecated since version 20.05: This will be removed in 20.06. Use check_ddp_wrapped instead.
-
catalyst.utils.distributed.
is_torch_distributed_initialized
() → bool[source]¶ Checks if torch.distributed is available and initialized.
Deprecated since version 20.05: This will be removed in 20.06. Use check_torch_distributed_initialized instead.
Hash¶
Initialization¶
-
catalyst.utils.initialization.
get_optimal_inner_init
(nonlinearity: torch.nn.modules.module.Module, **kwargs) → Callable[[torch.nn.modules.module.Module], None][source]¶ Create initializer for inner layers based on their activation function (nonlinearity).
- Parameters
nonlinearity – non-linear activation
Misc¶
-
catalyst.utils.misc.
copy_directory
(input_dir: pathlib.Path, output_dir: pathlib.Path) → None[source]¶ Recursively copies the input directory.
- Parameters
input_dir (Path) – input directory
output_dir (Path) – output directory
-
catalyst.utils.misc.
format_metric
(name: str, value: float) → str[source]¶ Format metric.
Metric will be returned in the scientific format if 4 decimal chars are not enough (metric value lower than 1e-4).
- Parameters
name (str) – metric name
value (float) – value of metric
-
catalyst.utils.misc.
get_fn_default_params
(fn: Callable[[...], Any], exclude: List[str] = None)[source]¶ Return default parameters of Callable.
- Parameters
fn (Callable[.., Any]) – target Callable
exclude (List[str]) – exclude list of parameters
- Returns
contains default parameters of fn
- Return type
dict
-
catalyst.utils.misc.
get_fn_argsnames
(fn: Callable[[...], Any], exclude: List[str] = None)[source]¶ Return parameter names of Callable.
- Parameters
fn (Callable[.., Any]) – target Callable
exclude (List[str]) – exclude list of parameters
- Returns
contains parameter names of fn
- Return type
list
-
catalyst.utils.misc.
get_utcnow_time
(format: str = None) → str[source]¶ Return string with current utc time in chosen format.
- Parameters
format (str) – format string. if None “%y%m%d.%H%M%S” will be used.
- Returns
formatted utc time string
- Return type
str
-
catalyst.utils.misc.
is_exception
(ex: Any) → bool[source]¶ Check if the argument is of
Exception
type.
-
catalyst.utils.misc.
maybe_recursive_call
(object_or_dict, method: str, recursive_args=None, recursive_kwargs=None, **kwargs)[source]¶ Calls the
method
recursively for theobject_or_dict
.- Parameters
object_or_dict (Any) – some object or a dictionary of objects
method (str) – method name to call
recursive_args – list of arguments to pass to the
method
recursive_kwargs – list of key-arguments to pass to the
method
**kwargs – Arbitrary keyword arguments
-
catalyst.utils.misc.
fn_ends_with_pass
(fn: Callable[[...], Any])[source]¶ Check that function end with pass statement (probably does nothing in any way). Mainly used to filter callbacks with empty on_{event} methods.
- Parameters
fn (Callable[.., Any]) – target Callable
- Returns
True if there is pass in the first indentation level of fn and nothing happens before it, False in any other case.
- Return type
bool
Numpy¶
-
catalyst.utils.numpy.
get_one_hot
(label: int, num_classes: int, smoothing: float = None) → numpy.ndarray[source]¶ Applies OneHot vectorization to a giving scalar, optional with label smoothing as described in Bag of Tricks for Image Classification with Convolutional Neural Networks.
- Parameters
label (int) – scalar value to be vectorized
num_classes (int) – total number of classes
smoothing (float, optional) – if specified applies label smoothing from
Bag of Tricks for Image Classification with Convolutional Neural Networks
paper
- Returns
a one-hot vector with shape
(num_classes,)
- Return type
np.ndarray
Parser¶
Scripts¶
-
catalyst.utils.scripts.
import_module
(expdir: pathlib.Path)[source]¶ @TODO: Docs. Contribution is welcome
-
catalyst.utils.scripts.
import_experiment_and_runner
(expdir: pathlib.Path)[source]¶ @TODO: Docs. Contribution is welcome
Sys¶
-
catalyst.utils.sys.
get_environment_vars
() → Dict[str, Any][source]¶ Creates a dictionary with environment variables.
- Returns
environment variables
- Return type
dict
-
catalyst.utils.sys.
list_conda_packages
() → str[source]¶ @TODO: Docs. Contribution is welcome @TODO: When catching exception, e has no attribute ‘output’
-
catalyst.utils.sys.
list_pip_packages
() → str[source]¶ @TODO: Docs. Contribution is welcome @TODO: When catching exception, e has no attribute ‘output’
-
catalyst.utils.sys.
dump_environment
(experiment_config: Dict, logdir: str, configs_path: List[str] = None) → None[source]¶ Saves config, environment variables and package list in JSON into logdir.
- Parameters
experiment_config (dict) – experiment config
logdir (str) – path to logdir
configs_path – path(s) to config
Torch¶
-
catalyst.utils.torch.
get_optimizable_params
(model_or_params)[source]¶ Returns all the parameters that requires gradients.
-
catalyst.utils.torch.
get_optimizer_momentum
(optimizer: torch.optim.optimizer.Optimizer) → float[source]¶ Get momentum of current optimizer.
- Parameters
optimizer – PyTorch optimizer
- Returns
momentum at first param group
- Return type
float
-
catalyst.utils.torch.
set_optimizer_momentum
(optimizer: torch.optim.optimizer.Optimizer, value: float, index: int = 0)[source]¶ Set momentum of
index
‘th param group of optimizer tovalue
.- Parameters
optimizer – PyTorch optimizer
value (float) – new value of momentum
index (int, optional) – integer index of optimizer’s param groups, default is 0
-
catalyst.utils.torch.
get_device
() → torch.device[source]¶ Simple returning the best available device (GPU or CPU).
-
catalyst.utils.torch.
get_available_gpus
()[source]¶ Array of available GPU ids.
Examples
>>> os.environ["CUDA_VISIBLE_DEVICES"] = "0,2" >>> get_available_gpus() [0, 2]
>>> os.environ["CUDA_VISIBLE_DEVICES"] = "0,-1,1" >>> get_available_gpus() [0]
>>> os.environ["CUDA_VISIBLE_DEVICES"] = "" >>> get_available_gpus() []
>>> os.environ["CUDA_VISIBLE_DEVICES"] = "-1" >>> get_available_gpus() []
- Returns
available GPU ids
- Return type
iterable
-
catalyst.utils.torch.
get_activation_fn
(activation: str = None)[source]¶ Returns the activation function from
torch.nn
by its name.
-
catalyst.utils.torch.
any2device
(value, device: Union[str, torch.device])[source]¶ Move tensor, list of tensors, list of list of tensors, dict of tensors, tuple of tensors to target device.
- Parameters
value – Object to be moved
device (Device) – target device ids
- Returns
Same structure as value, but all tensors and np.arrays moved to device
-
catalyst.utils.torch.
prepare_cudnn
(deterministic: bool = None, benchmark: bool = None) → None[source]¶ Prepares CuDNN benchmark and sets CuDNN to be deterministic/non-deterministic mode
- Parameters
deterministic (bool) – deterministic mode if running in CuDNN backend.
benchmark (bool) – If
True
use CuDNN heuristics to figure out which algorithm will be most performant for your model architecture and input. Setting it toFalse
may slow down your training.
-
catalyst.utils.torch.
process_model_params
(model: torch.nn.modules.module.Module, layerwise_params: Dict[str, dict] = None, no_bias_weight_decay: bool = True, lr_scaling: float = 1.0) → List[Union[torch.nn.parameter.Parameter, dict]][source]¶ Gains model parameters for
torch.optim.Optimizer
.- Parameters
model (torch.nn.Module) – Model to process
layerwise_params (Dict) – Order-sensitive dict where each key is regex pattern and values are layer-wise options for layers matching with a pattern
no_bias_weight_decay (bool) – If true, removes weight_decay for all
bias
parameters in the modellr_scaling (float) – layer-wise learning rate scaling, if 1.0, learning rates will not be scaled
- Returns
parameters for an optimizer
- Return type
iterable
Example:
>>> model = catalyst.contrib.models.segmentation.ResnetUnet() >>> layerwise_params = collections.OrderedDict([ >>> ("conv1.*", dict(lr=0.001, weight_decay=0.0003)), >>> ("conv.*", dict(lr=0.002)) >>> ]) >>> params = process_model_params(model, layerwise_params) >>> optimizer = torch.optim.Adam(params, lr=0.0003)
-
catalyst.utils.torch.
set_requires_grad
(model: torch.nn.modules.module.Module, requires_grad: bool)[source]¶ Sets the
requires_grad
value for all model parameters.Example:
>>> model = SimpleModel() >>> set_requires_grad(model, requires_grad=True)
- Parameters
model (torch.nn.Module) – model
requires_grad (bool) – value
-
catalyst.utils.torch.
get_network_output
(net: torch.nn.modules.module.Module, *input_shapes_args, **input_shapes_kwargs)[source]¶ # noqa: D202 For each input shape returns an output tensor
- Parameters
net (Model) – the model
*input_shapes_args – variable length argument list of shapes
**input_shapes_kwargs –
Examples
>>> net = nn.Linear(10, 5) >>> utils.get_network_output(net, (1, 10)) tensor([[[-0.2665, 0.5792, 0.9757, -0.5782, 0.1530]]])
-
catalyst.utils.torch.
detach
(tensor: torch.Tensor) → numpy.ndarray[source]¶ Detach a pytorch tensor from graph and convert it to numpy array
- Parameters
tensor – PyTorch tensor
- Returns
numpy ndarray
-
catalyst.utils.torch.
trim_tensors
(tensors)[source]¶ Trim padding off of a batch of tensors to the smallest possible length. Should be used with catalyst.data.DynamicLenBatchSampler.
Adapted from “Dynamic minibatch trimming to improve BERT training speed” https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification/discussion/94779
- Parameters
tensors ([torch.tensor]) – list of tensors to trim.
- Returns
list of trimmed tensors.
- Return type
([torch.tensor])
Tools¶
Frozen Class¶
Frozen class.
Example of usage can be found in catalyst.core.state.State
.
Registry¶
Registry. .. todo:: Representative docstring for this module
-
class
catalyst.tools.registry.
Registry
(default_name_key: str, default_meta_factory: Callable[[Union[Type, Callable[[...], Any]], Tuple, Mapping], Any] = <function _default_meta_factory>)[source]¶ Bases:
collections.abc.MutableMapping
Universal class allowing to add and access various factories by name.
-
__init__
(default_name_key: str, default_meta_factory: Callable[[Union[Type, Callable[[...], Any]], Tuple, Mapping], Any] = <function _default_meta_factory>)[source]¶ - Parameters
default_name_key (str) – Default key containing factory name when creating from config
default_meta_factory (MetaFactory) – default object that calls factory. Optional. Default just calls factory.
-
add
(factory: Union[Type, Callable[[...], Any]] = None, *factories: Union[Type, Callable[[...], Any]], name: str = None, **named_factories: Union[Type, Callable[[...], Any]]) → Union[Type, Callable[[...], Any]][source]¶ Adds factory to registry with it’s
__name__
attribute or provided name. Signature is flexible.- Parameters
factory – Factory instance
factories – More instances
name – Provided name for first instance. Use only when pass single instance.
named_factories – Factory and their names as kwargs
- Returns
First factory passed
- Return type
(Factory)
-
add_from_module
(module, prefix: Union[str, List[str]] = None) → None[source]¶ Adds all factories present in module. If
__all__
attribute is present, takes ony what mentioned in it.- Parameters
module – module to scan
prefix (Union[str, List[str]]) – prefix string for all the module’s factories. If prefix is a list, all values will be treated as aliases.
-
get
(name: str) → Union[Type, Callable[[...], Any], None][source]¶ Retrieves factory, without creating any objects with it or raises error.
- Parameters
name – factory name
- Returns
factory by name
- Return type
Factory
-
get_from_params
(*, meta_factory=None, **kwargs) → Union[Any, Tuple[Any, Mapping[str, Any]]][source]¶ Creates instance based in configuration dict with
instantiation_fn
. Ifconfig[name_key]
is None, None is returned.- Parameters
meta_factory – Function that calls factory the right way. If not provided, default is used.
**kwargs – additional kwargs for factory
- Returns
result of calling
instantiate_fn(factory, **config)
-
get_if_str
(obj: Union[str, Type, Callable[[...], Any]])[source]¶ Returns object from the registry if
obj
type is string.
-
get_instance
(name: str, *args, meta_factory=None, **kwargs)[source]¶ Creates instance by calling specified factory with
instantiate_fn
.- Parameters
name – factory name
meta_factory – Function that calls factory the right way. If not provided, default is used
args – args to pass to the factory
**kwargs – kwargs to pass to the factory
- Returns
created instance
-
Time Manager¶
Simple timer.
Typing¶
All Catalyst custom types are defined in this module.
-
catalyst.tools.typing.
Model
¶ alias of
torch.nn.modules.module.Module
-
catalyst.tools.typing.
Criterion
¶ alias of
torch.nn.modules.module.Module
-
class
catalyst.tools.typing.
Optimizer
(params, defaults)[source]¶ Bases:
object
Base class for all optimizers.
Warning
Parameters need to be specified as collections that have a deterministic ordering that is consistent between runs. Examples of objects that don’t satisfy those properties are sets and iterators over values of dictionaries.
- Parameters
params (iterable) – an iterable of
torch.Tensor
s ordict
s. Specifies what Tensors should be optimized.defaults – (dict): a dict containing default values of optimization options (used when a parameter group doesn’t specify them).
-
add_param_group
(param_group)[source]¶ Add a param group to the
Optimizer
s param_groups.This can be useful when fine tuning a pre-trained network as frozen layers can be made trainable and added to the
Optimizer
as training progresses.- Parameters
param_group (dict) – Specifies what Tensors should be optimized along with group
optimization options. (specific) –
-
load_state_dict
(state_dict)[source]¶ Loads the optimizer state.
- Parameters
state_dict (dict) – optimizer state. Should be an object returned from a call to
state_dict()
.
-
state_dict
()[source]¶ Returns the state of the optimizer as a
dict
.It contains two entries:
- state - a dict holding current optimization state. Its content
differs between optimizer classes.
param_groups - a dict containing all parameter groups
-
catalyst.tools.typing.
Scheduler
¶ alias of
torch.optim.lr_scheduler._LRScheduler
-
class
catalyst.tools.typing.
Dataset
[source]¶ Bases:
object
An abstract class representing a
Dataset
.All datasets that represent a map from keys to data samples should subclass it. All subclasses should overwrite
__getitem__()
, supporting fetching a data sample for a given key. Subclasses could also optionally overwrite__len__()
, which is expected to return the size of the dataset by manySampler
implementations and the default options ofDataLoader
.Note
DataLoader
by default constructs a index sampler that yields integral indices. To make it work with a map-style dataset with non-integral indices/keys, a custom sampler must be provided.
Metrics¶
Accuracy¶
- Various accuracy metrics:
-
catalyst.utils.metrics.accuracy.
accuracy
(outputs, targets, topk=(1, ), threshold: float = None, activation: str = None)[source]¶ Computes the accuracy.
It can be used either for:
Multi-class task, in this case:
you can use topk.
threshold and activation are not required.
targets is a tensor: batch_size
outputs is a tensor: batch_size x num_classes
computes the accuracy@k for the specified values of k.
Multi-label task, in this case:
you must specify threshold and activation
topk will not be used (because of there is no method to apply top-k in multi-label classification).
outputs, targets are tensors with shape: batch_size x num_classes
targets is a tensor with binary vectors
-
catalyst.utils.metrics.accuracy.
average_accuracy
(outputs, targets, k=10)[source]¶ Computes the average accuracy at k.
This function computes the average accuracy at k between two lists of items.
- Parameters
outputs (list) – A list of predicted elements
targets (list) – A list of elements that are to be predicted
k (int, optional) – The maximum number of predicted elements
- Returns
The average accuracy at k over the input lists
- Return type
double
-
catalyst.utils.metrics.accuracy.
mean_average_accuracy
(outputs, targets, topk=(1, ))[source]¶ Computes the mean average accuracy at k.
This function computes the mean average accuracy at k between two lists of lists of items.
- Parameters
outputs (list) – A list of lists of predicted elements
targets (list) – A list of lists of elements that are to be predicted
topk (int, optional) – The maximum number of predicted elements
- Returns
The mean average accuracy at k over the input lists
- Return type
double
Dice¶
Dice metric.
-
catalyst.utils.metrics.dice.
dice
(outputs: torch.Tensor, targets: torch.Tensor, eps: float = 1e-07, threshold: float = None, activation: str = 'Sigmoid')[source]¶ Computes the dice metric.
- Parameters
outputs (list) – a list of predicted elements
targets (list) – a list of elements that are to be predicted
eps (float) – epsilon
threshold (float) – threshold for outputs binarization
activation (str) – An torch.nn activation applied to the outputs. Must be one of [“none”, “Sigmoid”, “Softmax2d”]
- Returns
Dice score
- Return type
double
F1 score¶
F1 score.
-
catalyst.utils.metrics.f1_score.
f1_score
(outputs: torch.Tensor, targets: torch.Tensor, beta: float = 1.0, eps: float = 1e-07, threshold: float = None, activation: str = 'Sigmoid')[source]¶ - Parameters
outputs (torch.Tensor) – A list of predicted elements
targets (torch.Tensor) – A list of elements that are to be predicted
eps (float) – epsilon to avoid zero division
beta (float) – beta param for f_score
threshold (float) – threshold for outputs binarization
activation (str) – An torch.nn activation applied to the outputs. Must be one of [“none”, “Sigmoid”, “Softmax2d”]
- Returns
F_1 score
- Return type
float
Focal¶
- Focal losses:
-
catalyst.utils.metrics.focal.
sigmoid_focal_loss
(outputs: torch.Tensor, targets: torch.Tensor, gamma: float = 2.0, alpha: float = 0.25, reduction: str = 'mean')[source]¶ Compute binary focal loss between target and output logits.
- Parameters
outputs – tensor of arbitrary shape
targets – tensor of the same shape as input
reduction (string, optional) – specifies the reduction to apply to the output:
"none"
|"mean"
|"sum"
|"batchwise_mean"
."none"
: no reduction will be applied,"mean"
: the sum of the output will be divided by the number of elements in the output,"sum"
: the output will be summed.
-
catalyst.utils.metrics.focal.
reduced_focal_loss
(outputs: torch.Tensor, targets: torch.Tensor, threshold: float = 0.5, gamma: float = 2.0, reduction='mean')[source]¶ Compute reduced focal loss between target and output logits.
It has been proposed in Reduced Focal Loss: 1st Place Solution to xView object detection in Satellite Imagery paper.
- Parameters
outputs – tensor of arbitrary shape
targets – tensor of the same shape as input
reduction (string, optional) – specifies the reduction to apply to the output:
"none"
|"mean"
|"sum"
|"batchwise_mean"
."none"
: no reduction will be applied,"mean"
: the sum of the output will be divided by the number of elements in the output,"sum"
: the output will be summed."batchwise_mean"
computes mean loss per sample in batch. Default: “mean”
Note
size_average
andreduce
params are in the process of being deprecated, and in the meantime, specifying either of those two args will overridereduction
.
IoU¶
IoU metric. Jaccard metric refers to IoU here, same functionality.
-
catalyst.utils.metrics.iou.
iou
(outputs: torch.Tensor, targets: torch.Tensor, classes: List[str] = None, eps: float = 1e-07, threshold: float = None, activation: str = 'Sigmoid') → Union[float, List[float]][source]¶ - Parameters
outputs (torch.Tensor) – A list of predicted elements
targets (torch.Tensor) – A list of elements that are to be predicted
eps (float) – epsilon to avoid zero division
threshold (float) – threshold for outputs binarization
activation (str) – An torch.nn activation applied to the outputs. Must be one of [“none”, “Sigmoid”, “Softmax2d”]
- Returns
IoU (Jaccard) score(s)
- Return type
Union[float, List[float]]
-
catalyst.utils.metrics.iou.
jaccard
(outputs: torch.Tensor, targets: torch.Tensor, classes: List[str] = None, eps: float = 1e-07, threshold: float = None, activation: str = 'Sigmoid') → Union[float, List[float]]¶ - Parameters
outputs (torch.Tensor) – A list of predicted elements
targets (torch.Tensor) – A list of elements that are to be predicted
eps (float) – epsilon to avoid zero division
threshold (float) – threshold for outputs binarization
activation (str) – An torch.nn activation applied to the outputs. Must be one of [“none”, “Sigmoid”, “Softmax2d”]
- Returns
IoU (Jaccard) score(s)
- Return type
Union[float, List[float]]
Meters¶
The meters from torchnet.meters.
Every meter implements catalyst.utils.meters.meter.Meter
interface.
Meter¶
Meters provide a way to keep track of important statistics in an online manner.
AP Meter¶
The APMeter measures the average precision per class.
-
class
catalyst.utils.meters.apmeter.
APMeter
[source]¶ Bases:
catalyst.utils.meters.meter.Meter
The APMeter is designed to operate on NxK Tensors output and target, and optionally a Nx1 Tensor weight where:
1. The output contains model output scores for N examples and K classes that ought to be higher when the model is more convinced that the example should be positively labeled, and smaller when the model believes the example should be negatively labeled (for instance, the output of a sigmoid function).
2. The target contains only values 0 (for negative examples) and 1 (for positive examples).
3. The weight ( > 0) represents weight for each sample.
-
add
(output: torch.Tensor, target: torch.Tensor, weight: torch.Tensor = None) → None[source]¶ Add a new observation.
- Parameters
output (Tensor) – NxK tensor that for each of the N examples indicates the probability of the example belonging to each of the K classes, according to the model. The probabilities should sum to one over all classes
target (Tensor) – binary NxK tensort that encodes which of the K classes are associated with the N-th input (eg: a row [0, 1, 0, 1] indicates that the example is associated with classes 2 and 4)
weight (optional, Tensor) – Nx1 tensor representing the weight for each example (each weight > 0)
-
AUC Meter¶
The AUCMeter measures the area under the receiver-operating characteristic (ROC) curve for binary classification problems. The area under the curve (AUC) can be interpreted as the probability that, given a randomly selected positive example and a randomly selected negative example, the positive example is assigned a higher score by the classification model than the negative example.
-
class
catalyst.utils.meters.aucmeter.
AUCMeter
[source]¶ Bases:
catalyst.utils.meters.meter.Meter
The AUCMeter is designed to operate on one-dimensional Tensors output and target, where:
1. The output contains model output scores that ought to be higher when the model is more convinced that the example should be positively labeled, and smaller when the model believes the example should be negatively labeled (for instance, the output of a sigmoid function)
2. The target contains only values 0 (for negative examples) and 1 (for positive examples).
Average Value Meter¶
Average value meter
-
class
catalyst.utils.meters.averagevaluemeter.
AverageValueMeter
[source]¶ Bases:
catalyst.utils.meters.meter.Meter
Average value meter stores mean and standard deviation for population of input values. Meter updates are applied online, one value for each update. Values are not cached, only the last added.
-
add
(value) → None[source]¶ Add a new observation.
Updates of mean and std are going online, with Welford’s online algorithm.
- Parameters
value (float) – value for update, can be scalar number or PyTorch tensor
Note
Because of algorithm design, you can update meter values with only one value a time.
-
Class Error Meter¶
-
class
catalyst.utils.meters.classerrormeter.
ClassErrorMeter
(topk=None, accuracy=False)[source]¶ Bases:
catalyst.utils.meters.meter.Meter
@TODO: Docs. Contribution is welcome.
Confusion Meter¶
Maintains a confusion matrix for a given classification problem.
-
class
catalyst.utils.meters.confusionmeter.
ConfusionMeter
(k: int, normalized: bool = False)[source]¶ Bases:
catalyst.utils.meters.meter.Meter
ConfusionMeter constructs a confusion matrix for a multi-class classification problems. It does not support multi-label, multi-class problems: for such problems, please use MultiLabelConfusionMeter.
-
__init__
(k: int, normalized: bool = False)[source]¶ - Parameters
k (int) – number of classes in the classification problem
normalized (boolean) – determines whether or not the confusion matrix is normalized or not
-
add
(predicted: torch.Tensor, target: torch.Tensor) → None[source]¶ Computes the confusion matrix of
K x K
size whereK
is no of classes.- Parameters
predicted (tensor) – Can be an N x K tensor of predicted scores obtained from the model for N examples and K classes or an N-tensor of integer values between 0 and K-1
target (tensor) – Can be a N-tensor of integer values assumed to be integer values between 0 and K-1 or N x K tensor, where targets are assumed to be provided as one-hot vectors
-
Map Meter¶
The mAP meter measures the mean average precision over all classes.
-
class
catalyst.utils.meters.mapmeter.
mAPMeter
[source]¶ Bases:
catalyst.utils.meters.meter.Meter
This meter is a wrapper for
catalyst.utils.meters.apmeter.APMeter
. The mAPMeter is designed to operate on NxK Tensors output and target, and optionally a Nx1 Tensor weight where:1. The output contains model output scores for N examples and K classes that ought to be higher when the model is more convinced that the example should be positively labeled, and smaller when the model believes the example should be negatively labeled (for instance, the output of a sigmoid function)
2. The target contains only values 0 (for negative examples) and 1 (for positive examples)
3. The weight ( > 0) represents weight for each sample.
-
add
(output: torch.Tensor, target: torch.Tensor, weight: Optional[torch.Tensor] = None) → None[source]¶ Update self.apmeter.
- Parameters
output (Tensor) – Model output scores as NxK tensor
target (Tensor) – Target scores as NxK tensor
weight (Tensor, optional) – Weight values for each sample as Nx1 Tensor
-
Moving Average Value Meter¶
Moving average meter calculates average for moving window of values.
-
class
catalyst.utils.meters.movingaveragevaluemeter.
MovingAverageValueMeter
(windowsize)[source]¶ Bases:
catalyst.utils.meters.meter.Meter
MovingAverageValueMeter stores mean and standard deviation for population of array that is handled like a queue during updates. Queue(window) is filled with zeros from the start by default. Meter updates are applied online, one value for each update. Meter values are moving average and moving standard deviation.
MSE Meter¶
MSE and RMSE meters.
-
class
catalyst.utils.meters.msemeter.
MSEMeter
(root: bool = False)[source]¶ Bases:
catalyst.utils.meters.meter.Meter
This meter can handle MSE and RMSE. Root calculation can be toggled(not calculated by default).
-
__init__
(root: bool = False)[source]¶ - Parameters
root (bool) – Toggle between calculation of RMSE (True) and MSE (False)
-
Precision-Recall-F1 Meter¶
In this module precision, recall and F1 score calculations are defined in separate functions.
PrecisionRecallF1ScoreMeter
can keep track for all three of these.
-
class
catalyst.utils.meters.ppv_tpr_f1_meter.
PrecisionRecallF1ScoreMeter
(threshold=0.5)[source]¶ Bases:
catalyst.utils.meters.meter.Meter
Keeps track of global true positives, false positives, and false negatives for each epoch and calculates precision, recall, and F1-score based on those metrics. Currently, this meter works for binary cases only, please use multiple instances of this class for multi-label cases.
-
add
(output: torch.Tensor, target: torch.Tensor) → None[source]¶ Thresholds predictions and calculates the true positives, false positives, and false negatives in comparison to the target.
- Parameters
output (torch.Tensor) – prediction after activation function shape should be (batch_size, …), but works with any shape
target (torch.Tensor) – label (binary), shape should be the same as output’s shape
-
-
catalyst.utils.meters.ppv_tpr_f1_meter.
f1score
(precision_value, recall_value, eps=1e-05)[source]¶ Calculating F1-score from precision and recall to reduce computation redundancy.
- Parameters
precision_value – precision (0-1)
recall_value – recall (0-1)
- Returns
F1 score (0-1)
-
catalyst.utils.meters.ppv_tpr_f1_meter.
precision
(tp, fp, eps: float = 1e-05) → float[source]¶ Calculates precision (a.k.a. positive predictive value) for binary classification and segmentation.
- Parameters
tp (int) – number of true positives
fp (int) – number of false positives
- Returns
precision value (0-1)