Typing¶
All Catalyst custom types are defined in this module.
-
catalyst.typing.Model¶ alias of
torch.nn.modules.module.Module
-
catalyst.typing.Criterion¶ alias of
torch.nn.modules.module.Module
-
class
catalyst.typing.Optimizer(params, defaults)[source]¶ Bases:
objectBase class for all optimizers.
Warning
Parameters need to be specified as collections that have a deterministic ordering that is consistent between runs. Examples of objects that don’t satisfy those properties are sets and iterators over values of dictionaries.
- Parameters
params (iterable) – an iterable of
torch.Tensors ordicts. Specifies what Tensors should be optimized.defaults – (dict): a dict containing default values of optimization options (used when a parameter group doesn’t specify them).
-
add_param_group(param_group)[source]¶ Add a param group to the
Optimizers param_groups.This can be useful when fine tuning a pre-trained network as frozen layers can be made trainable and added to the
Optimizeras training progresses.- Parameters
param_group (dict) – Specifies what Tensors should be optimized along with group
optimization options. (specific) –
-
load_state_dict(state_dict)[source]¶ Loads the optimizer state.
- Parameters
state_dict (dict) – optimizer state. Should be an object returned from a call to
state_dict().
-
state_dict()[source]¶ Returns the state of the optimizer as a
dict.It contains two entries:
- state - a dict holding current optimization state. Its content
differs between optimizer classes.
param_groups - a dict containing all parameter groups
-
catalyst.typing.Scheduler¶ alias of
torch.optim.lr_scheduler._LRScheduler
-
class
catalyst.typing.Dataset[source]¶ Bases:
objectAn abstract class representing a
Dataset.All datasets that represent a map from keys to data samples should subclass it. All subclasses should overwrite
__getitem__(), supporting fetching a data sample for a given key. Subclasses could also optionally overwrite__len__(), which is expected to return the size of the dataset by manySamplerimplementations and the default options ofDataLoader.Note
DataLoaderby default constructs a index sampler that yields integral indices. To make it work with a map-style dataset with non-integral indices/keys, a custom sampler must be provided.