Multiple components¶
Thanks to Catalyst “key-value is all you need” approach, it’s very easy to use run experiments in multi-components setup (several model, criterions, optimizers, schedulers).
Suppose you have the following classification pipeline:
import os
import torch
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST
from torchvision.transforms import ToTensor
from catalyst import dl, metrics
model = torch.nn.Linear(28 * 28, 10)
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.02)
loaders = {
"train": DataLoader(MNIST(os.getcwd(), train=True, download=True, transform=ToTensor()), batch_size=32),
"valid": DataLoader(MNIST(os.getcwd(), train=False, download=True, transform=ToTensor()), batch_size=32),
}
class CustomRunner(dl.Runner):
def predict_batch(self, batch):
# model inference step
return self.model(batch[0].to(self.device).view(batch[0].size(0), -1))
def _handle_batch(self, batch):
# model train/valid step
x, y = batch
y_hat = self.model(x.view(x.size(0), -1))
loss = self.criterion(y_hat, y)
accuracy01, accuracy03 = metrics.accuracy(y_hat, y, topk=(1, 3))
self.batch_metrics.update(
{"loss": loss, "accuracy01": accuracy01, "accuracy03": accuracy03}
)
if self.is_train_loader:
loss.backward()
self.optimizer.step()
self.optimizer.zero_grad()
runner = CustomRunner()
# model training
runner.train(
model=model,
criterion=criterion,
optimizer=optimizer,
loaders=loaders,
logdir="./logs",
num_epochs=5,
verbose=True,
load_best_on_end=True,
)
Multi-model¶
Multi-model example:
import os
import torch
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST
from torchvision.transforms import ToTensor
from catalyst import dl, metrics
# <--- multi-model setup --->
encoder = torch.nn.Linear(28 * 28, 128)
head = torch.nn.Linear(128, 10)
model = {"encoder": encoder, "head": head}
optimizer = torch.optim.Adam([
{'params': encoder.parameters()},
{'params': head.parameters()},
], lr=0.02)
# <--- multi-model setup --->
criterion = torch.nn.CrossEntropyLoss()
loaders = {
"train": DataLoader(MNIST(os.getcwd(), train=True, download=True, transform=ToTensor()), batch_size=32),
"valid": DataLoader(MNIST(os.getcwd(), train=False, download=True, transform=ToTensor()), batch_size=32),
}
class CustomRunner(dl.Runner):
def predict_batch(self, batch):
# model inference step
return self.model(batch[0].to(self.device).view(batch[0].size(0), -1))
def _handle_batch(self, batch):
# model train/valid step
x, y = batch
# <--- multi-model usage --->
x_ = self.model["encoder"](x.view(x.size(0), -1))
y_hat = self.model["head"](x_)
# <--- multi-model usage --->
loss = self.criterion(y_hat, y)
accuracy01, accuracy03 = metrics.accuracy(y_hat, y, topk=(1, 3))
self.batch_metrics.update(
{"loss": loss, "accuracy01": accuracy01, "accuracy03": accuracy03}
)
if self.is_train_loader:
loss.backward()
self.optimizer.step()
self.optimizer.zero_grad()
runner = CustomRunner()
# model training
runner.train(
model=model,
criterion=criterion,
optimizer=optimizer,
loaders=loaders,
logdir="./logs",
num_epochs=5,
verbose=True,
load_best_on_end=True,
)
As you can see, the only think you need to do - just wrap the model with key-value. That it, simple enough, no extra abstractions required.
Multi-optimizer¶
Multi-optimizer example:
import os
import torch
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST
from torchvision.transforms import ToTensor
from catalyst import dl, metrics
# <--- multi-model/optimizer setup --->
encoder = torch.nn.Linear(28 * 28, 128)
head = torch.nn.Linear(128, 10)
model = {"encoder": encoder, "head": head}
optimizer = {
"encoder": torch.optim.Adam(encoder.parameters(), lr=0.02),
"head": torch.optim.Adam(head.parameters(), lr=0.001),
}
# <--- multi-model/optimizer setup --->
criterion = torch.nn.CrossEntropyLoss()
loaders = {
"train": DataLoader(MNIST(os.getcwd(), train=True, download=True, transform=ToTensor()), batch_size=32),
"valid": DataLoader(MNIST(os.getcwd(), train=False, download=True, transform=ToTensor()), batch_size=32),
}
class CustomRunner(dl.Runner):
def predict_batch(self, batch):
# model inference step
return self.model(batch[0].to(self.device).view(batch[0].size(0), -1))
def _handle_batch(self, batch):
# model train/valid step
x, y = batch
# <--- multi-model/optimizer usage --->
x_ = self.model["encoder"](x.view(x.size(0), -1))
y_hat = self.model["head"](x_)
# <--- multi-model/optimizer usage --->
loss = self.criterion(y_hat, y)
accuracy01, accuracy03 = metrics.accuracy(y_hat, y, topk=(1, 3))
self.batch_metrics.update(
{"loss": loss, "accuracy01": accuracy01, "accuracy03": accuracy03}
)
if self.is_train_loader:
loss.backward()
# <--- multi-model/optimizer usage --->
self.optimizer["encoder"].step()
self.optimizer["head"].step()
self.optimizer["encoder"].zero_grad()
self.optimizer["head"].zero_grad()
# <--- multi-model/optimizer usage --->
runner = CustomRunner()
# model training
runner.train(
model=model,
criterion=criterion,
optimizer=optimizer,
loaders=loaders,
logdir="./logs",
num_epochs=5,
verbose=True,
load_best_on_end=True,
)
The same thing here - we could wrap our optimizers with key-value too and use it in a stratforward way.
Multi-criterion¶
Multi-criterion example:
import os
import torch
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST
from torchvision.transforms import ToTensor
from catalyst import dl, metrics
model = torch.nn.Linear(28 * 28, 10)
optimizer = torch.optim.Adam(model.parameters(), lr=0.02)
# <--- multi-criterion setup --->
criterion = {
"multiclass": torch.nn.CrossEntropyLoss(),
"multilabel": torch.nn.BCEWithLogitsLoss(),
}
# <--- multi-criterion setup --->
loaders = {
"train": DataLoader(MNIST(os.getcwd(), train=True, download=True, transform=ToTensor()), batch_size=32),
"valid": DataLoader(MNIST(os.getcwd(), train=False, download=True, transform=ToTensor()), batch_size=32),
}
class CustomRunner(dl.Runner):
def predict_batch(self, batch):
# model inference step
return self.model(batch[0].to(self.device).view(batch[0].size(0), -1))
def _handle_batch(self, batch):
# model train/valid step
x, y = batch
y_hat = self.model(x.view(x.size(0), -1))
# <--- multi-criterion usage --->
loss_multiclass = self.criterion["multiclass"](y_hat, y)
loss_multilabel = self.criterion["multilabel"](y_hat, F.one_hot(y, 10).to(torch.float32))
loss = loss_multiclass + loss_multilabel
# <--- multi-criterion usage --->
accuracy01, accuracy03 = metrics.accuracy(y_hat, y, topk=(1, 3))
self.batch_metrics.update(
{"loss": loss, "accuracy01": accuracy01, "accuracy03": accuracy03}
)
if self.is_train_loader:
loss.backward()
self.optimizer.step()
self.optimizer.zero_grad()
runner = CustomRunner()
# model training
runner.train(
model=model,
criterion=criterion,
optimizer=optimizer,
loaders=loaders,
logdir="./logs",
num_epochs=5,
verbose=True,
load_best_on_end=True,
)
Same approach here - just use key-value storage to pass criterion through the experiment.
If you haven’t found the answer for your question, feel free to join our slack for the discussion.