Source code for

import torch
from torch._six import int_classes as _int_classes
from torch import Tensor

from typing import Iterator, Optional, Sequence, List, TypeVar, Generic, Sized

T_co = TypeVar('T_co', covariant=True)

class Sampler(Generic[T_co]):
    r"""Base class for all Samplers.

    Every Sampler subclass has to provide an :meth:`__iter__` method, providing a
    way to iterate over indices of dataset elements, and a :meth:`__len__` method
    that returns the length of the returned iterators.

    .. note:: The :meth:`__len__` method isn't strictly required by
              :class:``, but is expected in any
              calculation involving the length of a :class:``.

    def __init__(self, data_source: Optional[Sized]) -> None:

    def __iter__(self) -> Iterator[T_co]:
        raise NotImplementedError

    # NOTE [ Lack of Default `__len__` in Python Abstract Base Classes ]
    # Many times we have an abstract class representing a collection/iterable of
    # data, e.g., ``, with its subclasses optionally
    # implementing a `__len__` method. In such cases, we must make sure to not
    # provide a default implementation, because both straightforward default
    # implementations have their issues:
    #   + `return NotImplemented`:
    #     Calling `len(subclass_instance)` raises:
    #       TypeError: 'NotImplementedType' object cannot be interpreted as an integer
    #   + `raise NotImplementedError()`:
    #     This prevents triggering some fallback behavior. E.g., the built-in
    #     `list(X)` tries to call `len(X)` first, and executes a different code
    #     path if the method is not found or `NotImplemented` is returned, while
    #     raising an `NotImplementedError` will propagate and and make the call
    #     fail where it could have use `__iter__` to complete the call.
    # Thus, the only two sensible things to do are
    #   + **not** provide a default `__len__`.
    #   + raise a `TypeError` instead, which is what Python uses when users call
    #     a method that is not defined on an object.
    #     (@ssnl verifies that this works on at least Python 3.7.)

class SequentialSampler(Sampler[int]):
    r"""Samples elements sequentially, always in the same order.

        data_source (Dataset): dataset to sample from
    data_source: Sized

    def __init__(self, data_source):
        self.data_source = data_source

    def __iter__(self):
        return iter(range(len(self.data_source)))

    def __len__(self) -> int:
        return len(self.data_source)

class RandomSampler(Sampler[int]):
    r"""Samples elements randomly. If without replacement, then sample from a shuffled dataset.
    If with replacement, then user can specify :attr:`num_samples` to draw.

        data_source (Dataset): dataset to sample from
        replacement (bool): samples are drawn on-demand with replacement if ``True``, default=``False``
        num_samples (int): number of samples to draw, default=`len(dataset)`. This argument
            is supposed to be specified only when `replacement` is ``True``.
        generator (Generator): Generator used in sampling.
    data_source: Sized
    replacement: bool

    def __init__(self, data_source: Sized, replacement: bool = False,
                 num_samples: Optional[int] = None, generator=None) -> None:
        self.data_source = data_source
        self.replacement = replacement
        self._num_samples = num_samples
        self.generator = generator

        if not isinstance(self.replacement, bool):
            raise TypeError("replacement should be a boolean value, but got "

        if self._num_samples is not None and not replacement:
            raise ValueError("With replacement=False, num_samples should not be specified, "
                             "since a random permute will be performed.")

        if not isinstance(self.num_samples, int) or self.num_samples <= 0:
            raise ValueError("num_samples should be a positive integer "
                             "value, but got num_samples={}".format(self.num_samples))

    def num_samples(self) -> int:
        # dataset size might change at runtime
        if self._num_samples is None:
            return len(self.data_source)
        return self._num_samples

    def __iter__(self):
        n = len(self.data_source)
        if self.generator is None:
            generator = torch.Generator()
            generator.manual_seed(int(torch.empty((), dtype=torch.int64).random_().item()))
            generator = self.generator
        if self.replacement:
            for _ in range(self.num_samples // 32):
                yield from torch.randint(high=n, size=(32,), dtype=torch.int64, generator=generator).tolist()
            yield from torch.randint(high=n, size=(self.num_samples % 32,), dtype=torch.int64, generator=generator).tolist()
            yield from torch.randperm(n, generator=self.generator).tolist()

    def __len__(self):
        return self.num_samples

class SubsetRandomSampler(Sampler[int]):
    r"""Samples elements randomly from a given list of indices, without replacement.

        indices (sequence): a sequence of indices
        generator (Generator): Generator used in sampling.
    indices: Sequence[int]

    def __init__(self, indices: Sequence[int], generator=None) -> None:
        self.indices = indices
        self.generator = generator

    def __iter__(self):
        return (self.indices[i] for i in torch.randperm(len(self.indices), generator=self.generator))

    def __len__(self):
        return len(self.indices)

class WeightedRandomSampler(Sampler[int]):
    r"""Samples elements from ``[0,..,len(weights)-1]`` with given probabilities (weights).

        weights (sequence)   : a sequence of weights, not necessary summing up to one
        num_samples (int): number of samples to draw
        replacement (bool): if ``True``, samples are drawn with replacement.
            If not, they are drawn without replacement, which means that when a
            sample index is drawn for a row, it cannot be drawn again for that row.
        generator (Generator): Generator used in sampling.

        >>> list(WeightedRandomSampler([0.1, 0.9, 0.4, 0.7, 3.0, 0.6], 5, replacement=True))
        [4, 4, 1, 4, 5]
        >>> list(WeightedRandomSampler([0.9, 0.4, 0.05, 0.2, 0.3, 0.1], 5, replacement=False))
        [0, 1, 4, 3, 2]
    weights: Tensor
    num_samples: int
    replacement: bool

    def __init__(self, weights: Sequence[float], num_samples: int,
                 replacement: bool = True, generator=None) -> None:
        if not isinstance(num_samples, _int_classes) or isinstance(num_samples, bool) or \
                num_samples <= 0:
            raise ValueError("num_samples should be a positive integer "
                             "value, but got num_samples={}".format(num_samples))
        if not isinstance(replacement, bool):
            raise ValueError("replacement should be a boolean value, but got "
        self.weights = torch.as_tensor(weights, dtype=torch.double)
        self.num_samples = num_samples
        self.replacement = replacement
        self.generator = generator

    def __iter__(self):
        rand_tensor = torch.multinomial(self.weights, self.num_samples, self.replacement, generator=self.generator)
        return iter(rand_tensor.tolist())

    def __len__(self):
        return self.num_samples

class BatchSampler(Sampler[List[int]]):
    r"""Wraps another sampler to yield a mini-batch of indices.

        sampler (Sampler or Iterable): Base sampler. Can be any iterable object
        batch_size (int): Size of mini-batch.
        drop_last (bool): If ``True``, the sampler will drop the last batch if
            its size would be less than ``batch_size``

        >>> list(BatchSampler(SequentialSampler(range(10)), batch_size=3, drop_last=False))
        [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]]
        >>> list(BatchSampler(SequentialSampler(range(10)), batch_size=3, drop_last=True))
        [[0, 1, 2], [3, 4, 5], [6, 7, 8]]

    def __init__(self, sampler: Sampler[int], batch_size: int, drop_last: bool) -> None:
        # Since does not check for `__getitem__`, which
        # is one way for an object to be an iterable, we don't do an `isinstance`
        # check here.
        if not isinstance(batch_size, _int_classes) or isinstance(batch_size, bool) or \
                batch_size <= 0:
            raise ValueError("batch_size should be a positive integer value, "
                             "but got batch_size={}".format(batch_size))
        if not isinstance(drop_last, bool):
            raise ValueError("drop_last should be a boolean value, but got "
        self.sampler = sampler
        self.batch_size = batch_size
        self.drop_last = drop_last

    def __iter__(self):
        batch = []
        for idx in self.sampler:
            if len(batch) == self.batch_size:
                yield batch
                batch = []
        if len(batch) > 0 and not self.drop_last:
            yield batch

    def __len__(self):
        # Can only be called if self.sampler has __len__ implemented
        # We cannot enforce this condition, so we turn off typechecking for the
        # implementation below.
        # Somewhat related: see NOTE [ Lack of Default `__len__` in Python Abstract Base Classes ]
        if self.drop_last:
            return len(self.sampler) // self.batch_size  # type: ignore
            return (len(self.sampler) + self.batch_size - 1) // self.batch_size  # type: ignore