Source code for catalyst.loggers.tensorboard
from typing import Dict
import os
import numpy as np
from tensorboardX import SummaryWriter
from catalyst.core.logger import ILogger
from catalyst.loggers.functional import image_to_tensor
[docs]class TensorboardLogger(ILogger):
"""Tensorboard logger for parameters, metrics, images and other artifacts.
Args:
logdir: path to logdir for tensorboard
use_logdir_postfix: boolean flag to use extra ``tensorboard`` prefix in the logdir
.. note::
This logger is used by default by ``dl.Runner`` and ``dl.SupervisedRunner`` in case of
specified logdir during ``runner.train(..., logdir=/path/to/logdir)``.
.. note::
This logger is used by default by ``dl.ConfigRunner`` and ``dl.HydraRunner`` in case of
specified logdir in config ``args``.
Notebook API examples:
.. code-block:: python
from catalyst import dl
runner = dl.SupervisedRunner()
runner.train(
...,
loggers={"tensorboard": dl.TensorboardLogger(logdir="./logdir/tensorboard"}
)
.. code-block:: python
from catalyst import dl
class CustomRunner(dl.IRunner):
# ...
def get_loggers(self):
return {
"console": dl.ConsoleLogger(),
"tensorboard": dl.TensorboardLogger(logdir="./logdir/tensorboard")
}
# ...
runner = CustomRunner().run()
Config API example:
.. code-block:: yaml
loggers:
tensorboard:
_target_: TensorboardLogger
logdir: ./logdir/tensorboard
...
Hydra API example:
.. code-block:: yaml
loggers:
tensorboard:
_target_: catalyst.dl.TensorboardLogger
logdir: ./logdir/tensorboard
...
"""
def __init__(self, logdir: str, use_logdir_postfix: bool = False):
"""Init."""
if use_logdir_postfix:
logdir = os.path.join(logdir, "tensorboard")
self.logdir = logdir
self.loggers = {}
os.makedirs(self.logdir, exist_ok=True)
def _check_loader_key(self, loader_key: str):
if loader_key not in self.loggers.keys():
logdir = os.path.join(self.logdir, f"{loader_key}")
self.loggers[loader_key] = SummaryWriter(logdir)
def _log_metrics(self, metrics: Dict[str, float], step: int, loader_key: str, suffix=""):
for key, value in metrics.items():
self.loggers[loader_key].add_scalar(f"{key}{suffix}", float(value), step)
def log_metrics(
self,
metrics: Dict[str, float],
scope: str = None,
# experiment info
run_key: str = None,
global_epoch_step: int = 0,
global_batch_step: int = 0,
global_sample_step: int = 0,
# stage info
stage_key: str = None,
stage_epoch_len: int = 0,
stage_epoch_step: int = 0,
stage_batch_step: int = 0,
stage_sample_step: int = 0,
# loader info
loader_key: str = None,
loader_batch_len: int = 0,
loader_sample_len: int = 0,
loader_batch_step: int = 0,
loader_sample_step: int = 0,
) -> None:
"""Logs batch and epoch metrics to Tensorboard."""
if scope == "batch":
self._check_loader_key(loader_key=loader_key)
# metrics = {k: float(v) for k, v in metrics.items()}
self._log_metrics(
metrics=metrics, step=global_sample_step, loader_key=loader_key, suffix="/batch"
)
elif scope == "loader":
self._check_loader_key(loader_key=loader_key)
self._log_metrics(
metrics=metrics, step=global_epoch_step, loader_key=loader_key, suffix="/epoch",
)
elif scope == "epoch":
# @TODO: remove naming magic
loader_key = "_epoch_"
per_loader_metrics = metrics[loader_key]
self._check_loader_key(loader_key=loader_key)
self._log_metrics(
metrics=per_loader_metrics,
step=global_epoch_step,
loader_key=loader_key,
suffix="/epoch",
)
def log_image(
self,
tag: str,
image: np.ndarray,
scope: str = None,
# experiment info
run_key: str = None,
global_epoch_step: int = 0,
global_batch_step: int = 0,
global_sample_step: int = 0,
# stage info
stage_key: str = None,
stage_epoch_len: int = 0,
stage_epoch_step: int = 0,
stage_batch_step: int = 0,
stage_sample_step: int = 0,
# loader info
loader_key: str = None,
loader_batch_len: int = 0,
loader_sample_len: int = 0,
loader_batch_step: int = 0,
loader_sample_step: int = 0,
) -> None:
"""Logs image to Tensorboard for current scope on current step."""
assert loader_key is not None
self._check_loader_key(loader_key=loader_key)
tensor = image_to_tensor(image)
self.loggers[loader_key].add_image(f"{tag}/{scope}", tensor, global_step=global_epoch_step)
def flush_log(self) -> None:
"""Flushes the loggers."""
for logger in self.loggers.values():
logger.flush()
def close_log(self) -> None:
"""Closes the loggers."""
for logger in self.loggers.values():
logger.close()
__all__ = ["TensorboardLogger"]