Shortcuts

Source code for catalyst.contrib.datasets.movielens

import itertools
import os

import numpy as np
import scipy.sparse as sp

import torch
from torch.utils.data import Dataset

from catalyst.contrib.datasets.functional import download_and_extract_archive


[docs]class MovieLens(Dataset): """ MovieLens data sets were collected by the GroupLens Research Project at the University of Minnesota. This data set consists of: * 100,000 ratings (1-5) from 943 users on 1682 movies. * Each user has rated at least 20 movies. * Simple demographic info for the users (age, gender, occupation, zip) The data was collected through the MovieLens web site (movielens.umn.edu) during the seven-month period from September 19th, 1997 through April 22nd, 1998. This data has been cleaned up - users who had less than 20 ratings or did not have complete demographic information were removed from this data set. Detailed descriptions of the data file can be found at the end of this file. Neither the University of Minnesota nor any of the researchers involved can guarantee the correctness of the data, its suitability for any particular purpose, or the validity of results based on the use of the data set. The data set may be used for any research purposes under the following conditions: * The user may not state or imply any endorsement from the University of Minnesota or the GroupLens Research Group. * The user must acknowledge the use of the data set in publications resulting from the use of the data set (see below for citation information). * The user may not redistribute the data without separate permission. * The user may not use this information for any commercial or revenue-bearing purposes without first obtaining permission from a faculty member of the GroupLens Research Project at the University of Minnesota. If you have any further questions or comments, please contact GroupLens <grouplens-info@cs.umn.edu>. http://files.grouplens.org/datasets/movielens/ml-100k-README.txt """ resources = ( "http://files.grouplens.org/datasets/movielens/ml-100k.zip", "0e33842e24a9c977be4e0107933c0723", ) filename = "ml-100k.zip" training_file = "training.pt" test_file = "test.pt"
[docs] def __init__(self, root, train=True, download=False, min_rating=0.0): """ Args: root (string): Root directory of dataset where ``MovieLens/processed/training.pt`` and ``MovieLens/processed/test.pt`` exist. train (bool, optional): If True, creates dataset from ``training.pt``, otherwise from ``test.pt``. download (bool, optional): If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. min_rating (float, optional): Minimum rating to include in the interaction matrix """ if isinstance(root, torch._six.string_classes): root = os.path.expanduser(root) self.root = root self.train = train self.min_rating = min_rating if download: self._download() self._fetch_movies() if not self._check_exists(): raise RuntimeError("Dataset not found. You can use download=True to download it") if self.train: data_file = self.training_file else: data_file = self.test_file self.data = torch.load(os.path.join(self.processed_folder, data_file))
def __getitem__(self, user_index): """Get item. Args: user_index (int): User index [0, 942] Returns: tensor: (items) item's ranking for the user with index user_index """ return self.data[user_index] def __len__(self): """The length of the loader""" return self.dimensions[0] @property def raw_folder(self): """Create raw folder for data download""" return os.path.join(self.root, self.__class__.__name__, "raw") @property def processed_folder(self): """Create the folder for the processed files""" return os.path.join(self.root, self.__class__.__name__, "processed") def _check_exists(self): """Check if the path for tarining and testing data exists in processed folder.""" return os.path.exists( os.path.join(self.processed_folder, self.training_file) ) and os.path.exists(os.path.join(self.processed_folder, self.test_file)) def _download(self): """Download and extract files/""" if self._check_exists(): return os.makedirs(self.raw_folder, exist_ok=True) os.makedirs(self.processed_folder, exist_ok=True) url = self.resources[0] md5 = self.resources[1] download_and_extract_archive( url=url, download_root=self.raw_folder, filename=self.filename, md5=md5, remove_finished=True, ) def _read_raw_movielens_data(self): """Return the raw lines of the train and test files.""" path = self.raw_folder with open(path + "/ml-100k/ua.base") as datafile: ua_base = datafile.read().split("\n") with open(path + "/ml-100k/ua.test") as datafile: ua_test = datafile.read().split("\n") with open(path + "/ml-100k/u.item", encoding="ISO-8859-1") as datafile: u_item = datafile.read().split("\n") with open(path + "/ml-100k/u.genre") as datafile: u_genre = datafile.read().split("\n") return (ua_base, ua_test, u_item, u_genre) def _build_interaction_matrix(self, rows, cols, data): """Builds interaction matrix. Args: rows (int): rows of the oevrall dataset cols (int): columns of the overall dataset data (generator object): generator of the data object Returns: interaction_matrix (torch.sparse.Float): sparse user2item interaction matrix """ mat = sp.lil_matrix((rows, cols), dtype=np.int32) for uid, iid, rating, _ in data: if rating >= self.min_rating: mat[uid, iid] = rating coo = mat.tocoo() values = coo.data indices = np.vstack((coo.row, coo.col)) i = torch.LongTensor(indices) v = torch.FloatTensor(values) shape = coo.shape interaction_matrix = torch.sparse.FloatTensor(i, v, torch.Size(shape)).to_dense() return interaction_matrix def _parse(self, data): """Parses the raw data. Substract one to shift to zero based indexing Args: data: raw data of the dataset Returns: Generator iterator for parsed data """ for line in data: if not line: continue uid, iid, rating, timestamp = [int(x) for x in line.split("\t")] yield uid - 1, iid - 1, rating, timestamp def _get_dimensions(self, train_data, test_data): """Gets the dimensions of the raw dataset Args: train_data: (uid, iid, rating, timestamp) Genrator for training data test_data: (uid, iid, rating, timestamp) Genrator for testing data Returns: The total dimension of the dataset """ uids = set() iids = set() for uid, iid, _, _ in itertools.chain(train_data, test_data): uids.add(uid) iids.add(iid) rows = max(uids) + 1 cols = max(iids) + 1 self.dimensions = (rows, cols) return rows, cols def _fetch_movies(self): """ Fetch data and save in the pytorch format 1. Read the train/test data from raw archive 2. Parse train data 3. Parse test data 4. Save in the .pt with torch.save """ (train_raw, test_raw, item_metadata_raw, genres_raw) = self._read_raw_movielens_data() num_users, num_items = self._get_dimensions(self._parse(train_raw), self._parse(test_raw)) train = self._build_interaction_matrix(num_users, num_items, self._parse(train_raw)) test = self._build_interaction_matrix(num_users, num_items, self._parse(test_raw)) assert train.shape == test.shape with open(os.path.join(self.processed_folder, self.training_file), "wb") as f: torch.save(train, f) with open(os.path.join(self.processed_folder, self.test_file), "wb") as f: torch.save(test, f)
__all__ = ["MovieLens"]