Utils¶
Main¶
Config¶
-
catalyst.utils.config.
load_config
(path: Union[str, pathlib.Path], ordered: bool = False, data_format: str = None, encoding: str = 'utf-8') → Union[Dict, List][source]¶ Loads config by giving path. Supports YAML and JSON files.
Examples
>>> load(path="./config.yml", ordered=True)
- Parameters
path – path to config file (YAML or JSON)
ordered – if true the config will be loaded as
OrderedDict
data_format –
yaml
,yml
orjson
.encoding – encoding to read the config
- Returns
config
- Return type
Union[Dict, List]
- Raises
ValueError – if path
path
doesn’t exists or file format is not YAML or JSON
Adapted from https://github.com/TezRomacH/safitty/blob/v1.2.0/safitty/parser.py#L63 which was adapted from https://github.com/catalyst-team/catalyst/blob/v19.03/catalyst/utils/config.py#L10
-
catalyst.utils.config.
save_config
(config: Union[Dict, List], path: Union[str, pathlib.Path], data_format: str = None, encoding: str = 'utf-8', ensure_ascii: bool = False, indent: int = 2) → None[source]¶ Saves config to file. Path must be either YAML or JSON.
- Parameters
config (Union[Dict, List]) – config to save
path (Union[str, Path]) – path to save
data_format –
yaml
,yml
orjson
.encoding – Encoding to write file. Default is
utf-8
ensure_ascii – Used for JSON, if True non-ASCII
are escaped in JSON strings. (characters) –
indent – Used for JSON
Adapted from https://github.com/TezRomacH/safitty/blob/v1.2.0/safitty/parser.py#L110 which was adapted from https://github.com/catalyst-team/catalyst/blob/v19.03/catalyst/utils/config.py#L38
Distributed¶
-
catalyst.utils.distributed.
get_backend
() → Optional[str][source]¶ Returns the backend for distributed training.
-
catalyst.utils.distributed.
get_rank
() → int[source]¶ Returns the rank of the current worker.
- Returns
rank
if torch.distributed is initialized, otherwise-1
- Return type
int
-
catalyst.utils.distributed.
get_world_size
() → int[source]¶ Returns the world size for distributed training.
-
catalyst.utils.distributed.
get_distributed_params
()[source]¶ Returns distributed params for experiment run.
- Returns
dictionary with distributed params
-
catalyst.utils.distributed.
get_nn_from_ddp_module
(model: torch.nn.modules.module.Module) → torch.nn.modules.module.Module[source]¶ Return a real model from a torch.nn.DataParallel, torch.nn.parallel.DistributedDataParallel, or apex.parallel.DistributedDataParallel.
- Parameters
model – A model, or DataParallel wrapper.
- Returns
A model
-
catalyst.utils.distributed.
sum_reduce
(tensor: torch.Tensor) → torch.Tensor[source]¶ Reduce tensor to all processes and compute total (sum) value.
- Parameters
tensor – tensor to reduce.
- Returns
reduced tensor
-
catalyst.utils.distributed.
mean_reduce
(tensor: torch.Tensor, world_size: int) → torch.Tensor[source]¶ Reduce tensor to all processes and compute mean value.
- Parameters
tensor – tensor to reduce.
world_size – number of processes in DDP setup.
- Returns
reduced tensor
-
catalyst.utils.distributed.
all_gather
(data: Any) → List[Any][source]¶ Run all_gather on arbitrary picklable data (not necessarily tensors).
Note
if data on different devices then data in resulted list will be on the same devices. Source: https://github.com/facebookresearch/detr/blob/master/util/misc.py#L88-L128
- Parameters
data – any picklable object
- Returns
list of data gathered from each process.
-
catalyst.utils.distributed.
ddp_reduce
(tensor: torch.Tensor, mode: str, world_size: int)[source]¶ Syncs
tensor
overworld_size
in distributed mode.- Parameters
tensor – tensor to sync across the processes.
mode – tensor synchronization type, should be one of ‘sum’, ‘mean’ or ‘all’.
world_size – world size
- Returns
torch.Tensor with synchronized values.
- Raises
ValueError – if mode is out of
sum
,mean
,all
.
Misc¶
-
catalyst.utils.misc.
boolean_flag
(parser: argparse.ArgumentParser, name: str, default: Optional[bool] = False, help: str = None, shorthand: str = None) → None[source]¶ Add a boolean flag to a parser inplace.
Examples
>>> parser = argparse.ArgumentParser() >>> boolean_flag( >>> parser, "flag", default=False, help="some flag", shorthand="f" >>> )
- Parameters
parser – parser to add the flag to
name – argument name –<name> will enable the flag, while –no-<name> will disable it
default (bool, optional) – default value of the flag
help – help string for the flag
shorthand – shorthand string for the argument
-
catalyst.utils.misc.
get_fn_default_params
(fn: Callable[..., Any], exclude: List[str] = None)[source]¶ Return default parameters of Callable.
- Parameters
fn (Callable[.., Any]) – target Callable
exclude – exclude list of parameters
- Returns
contains default parameters of fn
- Return type
dict
-
catalyst.utils.misc.
get_fn_argsnames
(fn: Callable[..., Any], exclude: List[str] = None)[source]¶ Return parameter names of Callable.
- Parameters
fn (Callable[.., Any]) – target Callable
exclude – exclude list of parameters
- Returns
contains parameter names of fn
- Return type
list
-
catalyst.utils.misc.
get_utcnow_time
(format: str = None) → str[source]¶ Return string with current utc time in chosen format.
- Parameters
format – format string. if None “%y%m%d.%H%M%S” will be used.
- Returns
formatted utc time string
- Return type
str
-
catalyst.utils.misc.
is_exception
(ex: Any) → bool[source]¶ Check if the argument is of
Exception
type.
-
catalyst.utils.misc.
maybe_recursive_call
(object_or_dict, method: Union[str, Callable], recursive_args=None, recursive_kwargs=None, **kwargs)[source]¶ Calls the
method
recursively for theobject_or_dict
.- Parameters
object_or_dict – some object or a dictionary of objects
method – method name to call
recursive_args – list of arguments to pass to the
method
recursive_kwargs – list of key-arguments to pass to the
method
**kwargs – Arbitrary keyword arguments
- Returns
result of method call
-
catalyst.utils.misc.
get_attr
(obj: Any, key: str, inner_key: str = None) → Any[source]¶ Alias for python getattr method. Useful for Callbacks preparation and cases with multi-criterion, multi-optimizer setup. For example, when you would like to train multi-task classification.
Used to get a named attribute from a IRunner by key keyword; for example
get_attr(runner, "criterion") # is equivalent to runner.criterion get_attr(runner, "optimizer") # is equivalent to runner.optimizer get_attr(runner, "scheduler") # is equivalent to runner.scheduler
With inner_key usage, it suppose to find a dictionary under key and would get inner_key from this dict; for example,
get_attr(runner, "criterion", "bce") # is equivalent to runner.criterion["bce"] get_attr(runner, "optimizer", "adam") # is equivalent to runner.optimizer["adam"] get_attr(runner, "scheduler", "adam") # is equivalent to runner.scheduler["adam"]
- Parameters
obj – object of interest
key – name for attribute of interest, like criterion, optimizer, scheduler
inner_key – name of inner dictionary key
- Returns
inner attribute
-
catalyst.utils.misc.
set_global_seed
(seed: int) → None[source]¶ Sets random seed into Numpy and Random, PyTorch and TensorFlow.
- Parameters
seed – random seed
-
catalyst.utils.misc.
merge_dicts
(*dicts: dict) → dict[source]¶ Recursive dict merge. Instead of updating only top-level keys,
merge_dicts
recurses down into dicts nested to an arbitrary depth, updating keys.- Parameters
*dicts – several dictionaries to merge
- Returns
deep-merged dictionary
- Return type
dict
-
catalyst.utils.misc.
flatten_dict
(dictionary: Dict[str, Any], parent_key: str = '', separator: str = '/') → collections.OrderedDict[source]¶ Make the given dictionary flatten.
- Parameters
dictionary – giving dictionary
parent_key (str, optional) – prefix nested keys with string
parent_key
separator (str, optional) – delimiter between
parent_key
andkey
to use
- Returns
ordered dictionary with flatten keys
- Return type
collections.OrderedDict
-
catalyst.utils.misc.
get_hash
(obj: Any) → str[source]¶ Creates unique hash from object following way: - Represent obj as sting recursively - Hash this string with sha256 hash function - encode hash with url-safe base64 encoding
- Parameters
obj – object to hash
- Returns
base64-encoded string
-
catalyst.utils.misc.
get_short_hash
(obj) → str[source]¶ Creates unique short hash from object.
- Parameters
obj – object to hash
- Returns
short base64-encoded string (6 chars)
-
catalyst.utils.misc.
make_tuple
(tuple_like)[source]¶ Creates a tuple if given
tuple_like
value isn’t list or tuple.- Parameters
tuple_like – tuple like object - list or tuple
- Returns
tuple or list
Onnx¶
-
catalyst.utils.onnx.
onnx_export
(model: torch.nn.modules.module.Module, batch: torch.Tensor, file: str, method_name: str = 'forward', input_names: Iterable = None, output_names: List[str] = None, dynamic_axes: Union[Dict[str, int], Dict[str, Dict[str, int]]] = None, opset_version: int = 9, do_constant_folding: bool = False, return_model: bool = False, verbose: bool = False) → Union[None, onnx][source]¶ Converts model to onnx runtime.
- Parameters
model (torch.nn.Module) – model
batch (Tensor) – inputs
file (str, optional) – file to save. Defaults to “model.onnx”.
method_name (str, optional) – Forward pass method to be converted. Defaults to “forward”.
input_names (Iterable, optional) – name of inputs in graph. Defaults to None.
output_names (List[str], optional) – name of outputs in graph. Defaults to None.
dynamic_axes (Union[Dict[str, int], Dict[str, Dict[str, int]]], optional) – axes with dynamic shapes. Defaults to None.
opset_version (int, optional) – Defaults to 9.
do_constant_folding (bool, optional) – If True, the constant-folding optimization is applied to the model during export. Defaults to False.
return_model (bool, optional) – If True then returns onnxruntime model (onnx required). Defaults to False.
verbose (bool, default False) – if specified, we will print out a debug description of the trace being exported.
Example
import torch from catalyst.utils import convert_to_onnx class LinModel(torch.nn.Module): def __init__(self): super().__init__() self.lin1 = torch.nn.Linear(10, 10) self.lin2 = torch.nn.Linear(2, 10) def forward(self, inp_1, inp_2): return self.lin1(inp_1), self.lin2(inp_2) def first_only(self, inp_1): return self.lin1(inp_1) lin_model = LinModel() convert_to_onnx( model, batch=torch.randn((1, 10)), file="model.onnx", method_name="first_only" )
- Raises
ImportError – when
return_model
is True, but onnx is not installed.- Returns
onnx model if return_model set to True.
- Return type
Union[None, “onnx”]
-
catalyst.utils.onnx.
quantize_onnx_model
(onnx_model_path: Union[pathlib.Path, str], quantized_model_path: Union[pathlib.Path, str], qtype: str = 'qint8', verbose: bool = False) → None[source]¶ Takes model converted to onnx runtime and applies pruning.
- Parameters
onnx_model_path (Union[Path, str]) – path to onnx model.
quantized_model_path (Union[Path, str]) – path to quantized model.
qtype (str, optional) – Type of weights in quantized model. Can be quint8 or qint8. Defaults to “qint8”.
verbose (bool, optional) – If set to True prints model size before and after quantization. Defaults to False.
- Raises
ValueError – If qtype is not understood.
Pruning¶
-
catalyst.utils.pruning.
prune_model
(model: torch.nn.modules.module.Module, pruning_fn: Union[Callable, str], amount: Union[float, int], keys_to_prune: Optional[List[str]] = None, layers_to_prune: Optional[List[str]] = None, dim: int = None, l_norm: int = None) → None[source]¶ Prune model function can be used for pruning certain tensors in model layers.
- Parameters
model – Model to be pruned.
pruning_fn – Pruning function with API same as in torch.nn.utils.pruning. pruning_fn(module, name, amount).
keys_to_prune – list of strings. Determines which tensor in modules will be pruned.
amount – quantity of parameters to prune. If float, should be between 0.0 and 1.0 and represent the fraction of parameters to prune. If int, it represents the absolute number of parameters to prune.
layers_to_prune – list of strings - module names to be pruned. If None provided then will try to prune every module in model.
dim (int, optional) – if you are using structured pruning method you need to specify dimension. Defaults to None.
l_norm (int, optional) – if you are using ln_structured you need to specify l_norm. Defaults to None.
Example
pruned_model = prune_model(model, pruning_fn="l1_unstructured")
- Raises
AttributeError – If layers_to_prune is not None, but there is no layers with specified name. OR
ValueError – if no layers have specified keys.
-
catalyst.utils.pruning.
remove_reparametrization
(model: torch.nn.modules.module.Module, keys_to_prune: List[str], layers_to_prune: Optional[List[str]] = None) → None[source]¶ Removes pre-hooks and pruning masks from the model.
- Parameters
model – model to remove reparametrization.
keys_to_prune – list of strings. Determines which tensor in modules have already been pruned.
layers_to_prune – list of strings - module names have already been pruned. If None provided then will try to prune every module in model.
-
catalyst.utils.pruning.
get_pruning_fn
(pruning_fn: Union[str, Callable], dim: int = None, l_norm: int = None) → Callable[source]¶ [summary]
- Parameters
pruning_fn (Union[str, Callable]) – function from torch.nn.utils.prune module or your based on BasePruningMethod. Can be string e.g. “l1_unstructured”. See pytorch docs for more details.
dim (int, optional) – if you are using structured pruning method you need to specify dimension. Defaults to None.
l_norm (int, optional) – if you are using ln_structured you need to specify l_norm. Defaults to None.
- Raises
ValueError – If
dim
orl_norm
is not defined when it’s required.- Returns
pruning_fn
- Return type
Callable
Quantization¶
-
catalyst.utils.quantization.
quantize_model
(model: torch.nn.modules.module.Module, qconfig_spec: Dict = None, dtype: Union[str, torch.dtype, None] = 'qint8') → torch.nn.modules.module.Module[source]¶ Function to quantize model weights.
- Parameters
model – model to be quantized
qconfig_spec (Dict, optional) – quantization config in PyTorch format. Defaults to None.
dtype (Union[str, Optional[torch.dtype]], optional) – Type of weights after quantization. Defaults to “qint8”.
- Returns
quantized model
- Return type
Model
Stochastic Weights Averaging (SWA)¶
-
catalyst.utils.swa.
average_weights
(state_dicts: List[dict]) → collections.OrderedDict[source]¶ Averaging of input weights.
- Parameters
state_dicts – Weights to average
- Raises
KeyError – If states do not match
- Returns
Averaged weights
-
catalyst.utils.swa.
get_averaged_weights_by_path_mask
(path_mask: str, logdir: Union[str, pathlib.Path] = None) → collections.OrderedDict[source]¶ Averaging of input weights and saving them.
- Parameters
path_mask – globe-like pattern for models to average
logdir – Path to logs directory
- Returns
Averaged weights
Sys¶
-
catalyst.utils.sys.
dump_environment
(logdir: str, config: Any = None, configs_path: List[str] = None) → None[source]¶ Saves config, environment variables and package list in JSON into logdir.
- Parameters
logdir – path to logdir
config – experiment config
configs_path – path(s) to config
Torch¶
-
catalyst.utils.torch.
get_optimizable_params
(model_or_params)[source]¶ Returns all the parameters that requires gradients.
-
catalyst.utils.torch.
get_optimizer_momentum
(optimizer: torch.optim.optimizer.Optimizer) → float[source]¶ Get momentum of current optimizer.
- Parameters
optimizer – PyTorch optimizer
- Returns
momentum at first param group
- Return type
float
-
catalyst.utils.torch.
get_optimizer_momentum_list
(optimizer: torch.optim.optimizer.Optimizer) → List[Optional[float]][source]¶ Get list of optimizer momentums (for each param group)
- Parameters
optimizer – PyTorch optimizer
- Returns
momentum for each param group
- Return type
momentum_list (List[Union[float, None]])
-
catalyst.utils.torch.
set_optimizer_momentum
(optimizer: torch.optim.optimizer.Optimizer, value: float, index: int = 0)[source]¶ Set momentum of
index
‘th param group of optimizer tovalue
.- Parameters
optimizer – PyTorch optimizer
value – new value of momentum
index (int, optional) – integer index of optimizer’s param groups, default is 0
-
catalyst.utils.torch.
get_device
() → torch.device[source]¶ Simple returning the best available device (TPU > GPU > CPU).
-
catalyst.utils.torch.
get_available_gpus
()[source]¶ Array of available GPU ids.
Examples
>>> os.environ["CUDA_VISIBLE_DEVICES"] = "0,2" >>> get_available_gpus() [0, 2]
>>> os.environ["CUDA_VISIBLE_DEVICES"] = "0,-1,1" >>> get_available_gpus() [0]
>>> os.environ["CUDA_VISIBLE_DEVICES"] = "" >>> get_available_gpus() []
>>> os.environ["CUDA_VISIBLE_DEVICES"] = "-1" >>> get_available_gpus() []
- Returns
available GPU ids
- Return type
iterable
-
catalyst.utils.torch.
any2device
(value: Union[Dict, List, Tuple, numpy.ndarray, torch.Tensor, torch.nn.modules.module.Module], device: Union[str, torch.device]) → Union[Dict, List, Tuple, torch.Tensor, torch.nn.modules.module.Module][source]¶ Move tensor, list of tensors, list of list of tensors, dict of tensors, tuple of tensors to target device.
- Parameters
value – Object to be moved
device – target device ids
- Returns
Same structure as value, but all tensors and np.arrays moved to device
-
catalyst.utils.torch.
prepare_cudnn
(deterministic: bool = None, benchmark: bool = None) → None[source]¶ Prepares CuDNN benchmark and sets CuDNN to be deterministic/non-deterministic mode
- Parameters
deterministic – deterministic mode if running in CuDNN backend.
benchmark – If
True
use CuDNN heuristics to figure out which algorithm will be most performant for your model architecture and input. Setting it toFalse
may slow down your training.
-
catalyst.utils.torch.
process_model_params
(model: torch.nn.modules.module.Module, layerwise_params: Dict[str, dict] = None, no_bias_weight_decay: bool = True, lr_scaling: float = 1.0) → List[Union[torch.nn.parameter.Parameter, dict]][source]¶ Gains model parameters for
torch.optim.Optimizer
.- Parameters
model – Model to process
layerwise_params – Order-sensitive dict where each key is regex pattern and values are layer-wise options for layers matching with a pattern
no_bias_weight_decay – If true, removes weight_decay for all
bias
parameters in the modellr_scaling – layer-wise learning rate scaling, if 1.0, learning rates will not be scaled
- Returns
parameters for an optimizer
- Return type
iterable
Example:
>>> model = catalyst.contrib.models.segmentation.ResnetUnet() >>> layerwise_params = collections.OrderedDict([ >>> ("conv1.*", dict(lr=0.001, weight_decay=0.0003)), >>> ("conv.*", dict(lr=0.002)) >>> ]) >>> params = process_model_params(model, layerwise_params) >>> optimizer = torch.optim.Adam(params, lr=0.0003)
-
catalyst.utils.torch.
get_requires_grad
(model: torch.nn.modules.module.Module)[source]¶ Gets the
requires_grad
value for all model parameters.Example:
>>> model = SimpleModel() >>> requires_grad = get_requires_grad(model)
- Parameters
model – model
- Returns
value
- Return type
requires_grad
-
catalyst.utils.torch.
set_requires_grad
(model: torch.nn.modules.module.Module, requires_grad: Union[bool, Dict[str, bool]])[source]¶ Sets the
requires_grad
value for all model parameters.Example:
>>> model = SimpleModel() >>> set_requires_grad(model, requires_grad=True) >>> # or >>> model = SimpleModel() >>> set_requires_grad(model, requires_grad={""})
- Parameters
model – model
requires_grad – value
-
catalyst.utils.torch.
get_network_output
(net: torch.nn.modules.module.Module, *input_shapes_args, **input_shapes_kwargs)[source]¶ For each input shape returns an output tensor
Examples
>>> net = nn.Linear(10, 5) >>> utils.get_network_output(net, (1, 10)) tensor([[[-0.2665, 0.5792, 0.9757, -0.5782, 0.1530]]])
- Parameters
net – the model
*input_shapes_args – variable length argument list of shapes
**input_shapes_kwargs – key-value arguemnts of shapes
- Returns
tensor with network output
-
catalyst.utils.torch.
get_available_engine
(fp16: bool = False, ddp: bool = False, amp: bool = False, apex: bool = False) → IEngine[source]¶ Returns available engine based on given arguments.
- Parameters
fp16 (bool) – option to use fp16 for training. Default is False.
ddp (bool) – option to use DDP for training. Default is False.
amp (bool) – option to use APEX for training. Default is False.
apex (bool) – option to use APEX for training. Default is False.
- Returns
IEngine which match requirements.
-
catalyst.utils.torch.
detach_tensor
(tensor: torch.Tensor) → numpy.ndarray[source]¶ Detach a pytorch tensor from graph and convert it to numpy array
- Parameters
tensor – PyTorch tensor
- Returns
numpy ndarray
-
catalyst.utils.torch.
trim_tensors
(tensors: torch.Tensor) → List[torch.Tensor][source]¶ Trim padding off of a batch of tensors to the smallest possible length. Should be used with catalyst.data.DynamicLenBatchSampler.
Adapted from Dynamic minibatch trimming to improve BERT training speed.
- Parameters
tensors – list of tensors to trim.
- Returns
list of trimmed tensors.
- Return type
List[torch.tensor]
-
catalyst.utils.torch.
get_optimal_inner_init
(nonlinearity: torch.nn.modules.module.Module, **kwargs) → Callable[torch.nn.modules.module.Module, None][source]¶ Create initializer for inner layers based on their activation function (nonlinearity).
- Parameters
nonlinearity – non-linear activation
**kwargs – extra kwargs
- Returns
optimal initialization function
- Raises
NotImplementedError – if nonlinearity is out of sigmoid, tanh, relu, `leaky_relu
-
catalyst.utils.torch.
outer_init
(layer: torch.nn.modules.module.Module) → None[source]¶ Initialization for output layers of policy and value networks typically used in deep reinforcement learning literature.
- Parameters
layer – torch nn.Module instance
-
catalyst.utils.torch.
reset_weights_if_possible
(module: torch.nn.modules.module.Module)[source]¶ Resets module parameters if possible.
- Parameters
module – Module to reset.
-
catalyst.utils.torch.
pack_checkpoint
(model: Union[torch.nn.modules.module.Module, Dict[str, torch.nn.modules.module.Module]] = None, criterion: Union[torch.nn.modules.module.Module, Dict[str, torch.nn.modules.module.Module]] = None, optimizer: Union[torch.optim.optimizer.Optimizer, Dict[str, torch.optim.optimizer.Optimizer]] = None, scheduler: Union[torch.optim.lr_scheduler._LRScheduler, Dict[str, torch.optim.lr_scheduler._LRScheduler]] = None, **kwargs) → Dict[source]¶ Packs
model
,criterion
,optimizer
,scheduler
and some extra info**kwargs
to torch-based checkpoint.- Parameters
model – torch model
criterion – torch criterion
optimizer – torch optimizer
scheduler – torch scheduler
**kwargs – some extra info to pack
- Returns
torch-based checkpoint with
model_state_dict
,criterion_state_dict
,optimizer_state_dict
,scheduler_state_dict
keys.
-
catalyst.utils.torch.
unpack_checkpoint
(checkpoint: Dict, model: Union[torch.nn.modules.module.Module, Dict[str, torch.nn.modules.module.Module]] = None, criterion: Union[torch.nn.modules.module.Module, Dict[str, torch.nn.modules.module.Module]] = None, optimizer: Union[torch.optim.optimizer.Optimizer, Dict[str, torch.optim.optimizer.Optimizer]] = None, scheduler: Union[torch.optim.lr_scheduler._LRScheduler, Dict[str, torch.optim.lr_scheduler._LRScheduler]] = None) → None[source]¶ Load checkpoint from file and unpack the content to a model (if not None), criterion (if not None), optimizer (if not None), scheduler (if not None).
- Parameters
checkpoint – checkpoint to load
model – model where should be updated state
criterion – criterion where should be updated state
optimizer – optimizer where should be updated state
scheduler – scheduler where should be updated state
-
catalyst.utils.torch.
save_checkpoint
(checkpoint: Mapping[str, Any], path: str)[source]¶ Saves checkpoint to a file.
- Parameters
checkpoint – data to save.
path – filepath where checkpoint should be stored.
-
catalyst.utils.torch.
load_checkpoint
(path: str)[source]¶ Load checkpoint from path.
- Parameters
path – checkpoint file to load
- Returns
checkpoint content
-
catalyst.utils.torch.
soft_update
(target: torch.nn.modules.module.Module, source: torch.nn.modules.module.Module, tau: float) → None[source]¶ Updates the target data with the source one smoothing by
tau
(inplace operation).- Parameters
target – nn.Module to update
source – nn.Module for updating
tau – smoothing parametr
-
catalyst.utils.torch.
mixup_batch
(batch: List[torch.Tensor], alpha: float = 0.2, mode: str = 'replace') → List[torch.Tensor][source]¶ - Parameters
batch – batch to which you want to apply augmentation
alpha – beta distribution a=b parameters. Must be >=0. The closer alpha to zero the less effect of the mixup.
mode – algorithm used for muxup:
"replace"
|"add"
. If “replace” then replaces the batch with a mixed one, while the batch size is not changed If “add”, concatenates mixed examples to the current ones, the batch size increases by 2 times.
- Returns
augmented batch
Tracing¶
-
catalyst.utils.tracing.
trace_model
(model: torch.nn.modules.module.Module, batch: Union[Tuple[torch.Tensor], torch.Tensor], method_name: str = 'forward') → torch.jit._script.ScriptModule[source]¶ Traces model using runner and batch.
- Parameters
model – Model to trace
batch – Batch to trace the model
method_name – Model’s method name that will be used as entrypoint during tracing
Example
import torch from catalyst.utils import trace_model class LinModel(torch.nn.Module): def __init__(self): super().__init__() self.lin1 = torch.nn.Linear(10, 10) self.lin2 = torch.nn.Linear(2, 10) def forward(self, inp_1, inp_2): return self.lin1(inp_1), self.lin2(inp_2) def first_only(self, inp_1): return self.lin1(inp_1) lin_model = LinModel() traced_model = trace_model( lin_model, batch=torch.randn(1, 10), method_name="first_only" )
- Returns
Traced model
- Return type
jit.ScriptModule
Contrib¶
Image¶
-
catalyst.contrib.utils.image.
has_image_extension
(uri) → bool[source]¶ Check that file has image extension.
- Parameters
uri (Union[str, pathlib.Path]) – the resource to load the file from
- Returns
True if file has image extension, False otherwise
- Return type
bool
-
catalyst.contrib.utils.image.
imread
(uri, grayscale: bool = False, expand_dims: bool = True, rootpath: Union[str, pathlib.Path] = None, **kwargs) → numpy.ndarray[source]¶ Reads an image from the specified file.
- Parameters
uri (str, pathlib.Path, bytes, file) – the resource to load the image from, e.g. a filename,
pathlib.Path
, http address or file object, seeimageio.imread
docs for more infograyscale – if True, make all images grayscale
expand_dims – if True, append channel axis to grayscale images rootpath (Union[str, pathlib.Path]): path to the resource with image (allows to use relative path)
rootpath (Union[str, pathlib.Path]) – path to the resource with image (allows to use relative path)
**kwargs – extra params for image read
- Returns
image
- Return type
np.ndarray
-
catalyst.contrib.utils.image.
imwrite
(**kwargs)[source]¶ imwrite(uri, im, format=None, **kwargs)
Write an image to the specified file. Alias for
imageio.imwrite
.- Parameters
**kwargs – parameters for
imageio.imwrite
- Returns
image save result
-
catalyst.contrib.utils.image.
imsave
(**kwargs)[source]¶ imwrite(uri, im, format=None, **kwargs)
Write an image to the specified file. Alias for
imageio.imsave
.- Parameters
**kwargs – parameters for
imageio.imsave
- Returns
image save result
-
catalyst.contrib.utils.image.
mimread
(uri, clip_range: Tuple[int, int] = None, expand_dims: bool = True, rootpath: Union[str, pathlib.Path] = None, **kwargs) → numpy.ndarray[source]¶ Reads multiple images from the specified file.
- Parameters
uri (str, pathlib.Path, bytes, file) – the resource to load the image from, e.g. a filename,
pathlib.Path
, http address or file object, seeimageio.mimread
docs for more infoclip_range (Tuple[int, int]) – lower and upper interval edges, image values outside the interval are clipped to the interval edges
expand_dims – if True, append channel axis to grayscale images rootpath (Union[str, pathlib.Path]): path to the resource with image (allows to use relative path)
rootpath (Union[str, pathlib.Path]) – path to the resource with image (allows to use relative path)
**kwargs – extra params for image read
- Returns
image
- Return type
np.ndarray
Report¶
-
catalyst.contrib.utils.report.
get_classification_report
(y_true: numpy.ndarray, y_pred: numpy.ndarray, y_scores: numpy.ndarray = None, beta: float = None) → pandas.core.frame.DataFrame[source]¶ Generates pandas-based per-class and aggregated classification metrics.
- Parameters
y_true (np.ndarray) – ground truth labels
y_pred (np.ndarray) – predicted model labels
y_scores (np.ndarray) – predicted model scores. Defaults to None.
beta (float, optional) – Beta parameter for custom Fbeta score computation. Defaults to None.
- Returns
pandas dataframe with main classification metrics.
- Return type
pd.DataFrame
Examples:
from sklearn import datasets, linear_model, metrics from sklearn.model_selection import train_test_split from catalyst import utils digits = datasets.load_digits() # flatten the images n_samples = len(digits.images) data = digits.images.reshape((n_samples, -1)) # Create a classifier clf = linear_model.LogisticRegression(multi_class="ovr") # Split data into 50% train and 50% test subsets X_train, X_test, y_train, y_test = train_test_split( data, digits.target, test_size=0.5, shuffle=False) # Learn the digits on the train subset clf.fit(X_train, y_train) # Predict the value of the digit on the test subset y_scores = clf.predict_proba(X_test) y_pred = clf.predict(X_test) utils.get_classification_report( y_true=y_test, y_pred=y_pred, y_scores=y_scores, beta=0.5 )
Thresholds¶
-
catalyst.contrib.utils.thresholds.
get_baseline_thresholds
(scores: numpy.ndarray, labels: numpy.ndarray, objective: Callable[[numpy.ndarray, numpy.ndarray], float]) → Tuple[float, List[float]][source]¶ Returns baseline thresholds for multiclass/multilabel classification.
- Parameters
scores – estimated per-class scores/probabilities predicted by the model, numpy array with shape [num_examples, num_classes]
labels – ground truth labels, numpy array with shape [num_examples, num_classes]
objective – callable function, metric which we want to maximize
- Returns
tuple with best found objective score and per-class thresholds
-
catalyst.contrib.utils.thresholds.
get_binary_threshold
(scores: numpy.ndarray, labels: numpy.ndarray, objective: Callable[[numpy.ndarray, numpy.ndarray], float], num_thresholds: int = 100) → Tuple[float, float][source]¶ Finds best threshold for binary classification task based on cross-validation estimates.
- Parameters
scores – estimated per-class scores/probabilities predicted by the model, numpy array with shape [num_examples, ]
labels – ground truth labels, numpy array with shape [num_examples, ]
objective – callable function, metric which we want to maximize
num_thresholds – number of thresholds ot try for each class
- Returns
tuple with best found objective score and threshold
-
catalyst.contrib.utils.thresholds.
get_multiclass_thresholds
(scores: numpy.ndarray, labels: numpy.ndarray, objective: Callable[[numpy.ndarray, numpy.ndarray], float]) → Tuple[List[float], List[float]][source]¶ Finds best thresholds for multiclass classification task.
- Parameters
scores – estimated per-class scores/probabilities predicted by the model, numpy array with shape [num_examples, num_classes]
labels – ground truth labels, numpy array with shape [num_examples, num_classes]
objective – callable function, metric which we want to maximize
- Returns
tuple with best found objective score and per-class thresholds
-
catalyst.contrib.utils.thresholds.
get_multilabel_thresholds
(scores: numpy.ndarray, labels: numpy.ndarray, objective: Callable[[numpy.ndarray, numpy.ndarray], float])[source]¶ Finds best thresholds for multilabel classification task.
- Parameters
scores – estimated per-class scores/probabilities predicted by the model, numpy array with shape [num_examples, num_classes]
labels – ground truth labels, numpy array with shape [num_examples, num_classes]
objective – callable function, metric which we want to maximize
- Returns
tuple with best found objective score and per-class thresholds
-
catalyst.contrib.utils.thresholds.
get_binary_threshold_cv
(scores: numpy.ndarray, labels: numpy.ndarray, objective: Callable[[numpy.ndarray, numpy.ndarray], float], num_splits: int = 5, num_repeats: int = 1, random_state: int = 42)[source]¶ Finds best threshold for binary classification task based on cross-validation estimates.
- Parameters
scores – estimated per-class scores/probabilities predicted by the model, numpy array with shape [num_examples, ]
labels – ground truth labels, numpy array with shape [num_examples, ]
objective – callable function, metric which we want to maximize
num_splits – number of splits to use for cross-validation
num_repeats – number of repeats to use for cross-validation
random_state – random state to use for cross-validation
- Returns
tuple with best found objective score and threshold
-
catalyst.contrib.utils.thresholds.
get_multilabel_thresholds_cv
(scores: numpy.ndarray, labels: numpy.ndarray, objective: Callable[[numpy.ndarray, numpy.ndarray], float], num_splits: int = 5, num_repeats: int = 1, random_state: int = 42)[source]¶ Finds best thresholds for multilabel classification task based on cross-validation estimates.
- Parameters
scores – estimated per-class scores/probabilities predicted by the model, numpy array with shape [num_examples, num_classes]
labels – ground truth labels, numpy array with shape [num_examples, num_classes]
objective – callable function, metric which we want to maximize
num_splits – number of splits to use for cross-validation
num_repeats – number of repeats to use for cross-validation
random_state – random state to use for cross-validation
- Returns
tuple with best found objective score and per-class thresholds
-
catalyst.contrib.utils.thresholds.
get_thresholds_greedy
(scores: numpy.ndarray, labels: numpy.ndarray, score_fn: Callable, num_iterations: int = 100, num_thresholds: int = 100, thresholds: numpy.ndarray = None, patience: int = 3, atol: float = 0.01) → Tuple[float, List[float]][source]¶ Finds best thresholds for classification task with brute-force algorithm.
- Parameters
scores – estimated per-class scores/probabilities predicted by the model
labels – ground truth labels
score_fn – callable function, based on (scores, labels, thresholds)
num_iterations – number of iteration for brute-force algorithm
num_thresholds – number of thresholds ot try for each class
thresholds – baseline thresholds, which we want to optimize
patience – maximum number of iteration before early stop exit
atol – minimum required improvement per iteration for early stop exit
- Returns
tuple with best found objective score and per-class thresholds
-
catalyst.contrib.utils.thresholds.
get_multilabel_thresholds_greedy
(scores: numpy.ndarray, labels: numpy.ndarray, objective: Callable[[numpy.ndarray, numpy.ndarray], float], num_iterations: int = 100, num_thresholds: int = 100, thresholds: numpy.ndarray = None, patience: int = 3, atol: float = 0.01) → Tuple[float, List[float]][source]¶ Finds best thresholds for multilabel classification task with brute-force algorithm.
- Parameters
scores – estimated per-class scores/probabilities predicted by the model
labels – ground truth labels
objective – callable function, metric which we want to maximize
num_iterations – number of iteration for brute-force algorithm
num_thresholds – number of thresholds ot try for each class
thresholds – baseline thresholds, which we want to optimize
patience – maximum number of iteration before early stop exit
atol – minimum required improvement per iteration for early stop exit
- Returns
tuple with best found objective score and per-class thresholds
-
catalyst.contrib.utils.thresholds.
get_multiclass_thresholds_greedy
(scores: numpy.ndarray, labels: numpy.ndarray, objective: Callable[[numpy.ndarray, numpy.ndarray], float], num_iterations: int = 100, num_thresholds: int = 100, thresholds: numpy.ndarray = None, patience: int = 3, atol: float = 0.01) → Tuple[float, List[float]][source]¶ Finds best thresholds for multiclass classification task with brute-force algorithm.
- Parameters
scores – estimated per-class scores/probabilities predicted by the model
labels – ground truth labels
objective – callable function, metric which we want to maximize
num_iterations – number of iteration for brute-force algorithm
num_thresholds – number of thresholds ot try for each class
thresholds – baseline thresholds, which we want to optimize
patience – maximum number of iteration before early stop exit
atol – minimum required improvement per iteration for early stop exit
- Returns
tuple with best found objective score and per-class thresholds
-
catalyst.contrib.utils.thresholds.
get_best_multilabel_thresholds
(scores: numpy.ndarray, labels: numpy.ndarray, objective: Callable[[numpy.ndarray, numpy.ndarray], float]) → Tuple[float, List[float]][source]¶ Finds best thresholds for multilabel classification task.
- Parameters
scores – estimated per-class scores/probabilities predicted by the model
labels – ground truth labels
objective – callable function, metric which we want to maximize
- Returns
tuple with best found objective score and per-class thresholds
-
catalyst.contrib.utils.thresholds.
get_best_multiclass_thresholds
(scores: numpy.ndarray, labels: numpy.ndarray, objective: Callable[[numpy.ndarray, numpy.ndarray], float]) → Tuple[float, List[float]][source]¶ Finds best thresholds for multiclass classification task.
- Parameters
scores – estimated per-class scores/probabilities predicted by the model
labels – ground truth labels
objective – callable function, metric which we want to maximize
- Returns
tuple with best found objective score and per-class thresholds
Visualization¶
-
catalyst.contrib.utils.visualization.
plot_confusion_matrix
(cm: numpy.ndarray, class_names=None, normalize=False, title='confusion matrix', fname=None, show=True, figsize=12, fontsize=32, colormap='Blues')[source]¶ Render the confusion matrix and return matplotlib”s figure with it. Normalization can be applied by setting normalize=True.
- Parameters
cm – numpy confusion matrix
class_names – class names
normalize – boolean flag to normalize confusion matrix
title – title
fname – filename to save confusion matrix
show – boolean flag for preview
figsize – matplotlib figure size
fontsize – matplotlib font size
colormap – matplotlib color map
- Returns
matplotlib figure