Source code for catalyst.contrib.losses.circle
from typing import Tuple
import torch
from torch import nn, Tensor
def _convert_label_to_similarity(normed_features: Tensor, labels: Tensor) -> Tuple[Tensor, Tensor]:
similarity_matrix = normed_features @ normed_features.transpose(1, 0)
label_matrix = labels.unsqueeze(1) == labels.unsqueeze(0)
positive_matrix = label_matrix.triu(diagonal=1)
negative_matrix = label_matrix.logical_not().triu(diagonal=1)
similarity_matrix = similarity_matrix.view(-1)
positive_matrix = positive_matrix.view(-1)
negative_matrix = negative_matrix.view(-1)
sp, sn = (
similarity_matrix[positive_matrix],
similarity_matrix[negative_matrix],
)
return sp, sn
[docs]class CircleLoss(nn.Module):
"""
CircleLoss from `Circle Loss: A Unified Perspective of Pair Similarity Optimization`_ paper.
Adapter from:
https://github.com/TinyZeaMays/CircleLoss
Example:
>>> import torch
>>> from torch.nn import functional as F
>>> from catalyst.contrib.losses import CircleLoss
>>>
>>> features = F.normalize(torch.rand(256, 64, requires_grad=True))
>>> labels = torch.randint(high=10, size=(256))
>>> criterion = CircleLoss(margin=0.25, gamma=256)
>>> criterion(features, labels)
.. _`Circle Loss: A Unified Perspective of Pair Similarity Optimization`:
https://arxiv.org/abs/2002.10857
"""
[docs] def __init__(self, margin: float, gamma: float) -> None:
"""
Args:
margin: margin to use
gamma: gamma to use
"""
super().__init__()
self.margin = margin
self.gamma = gamma
self.soft_plus = nn.Softplus()
def forward(self, normed_features: Tensor, labels: Tensor) -> Tensor:
"""
Args:
normed_features: batch with samples features of shape
[bs; feature_len]
labels: batch with samples correct labels of shape [bs; ]
Returns:
torch.Tensor: circle loss
"""
sp, sn = _convert_label_to_similarity(normed_features, labels)
ap = torch.clamp_min(-sp.detach() + 1 + self.margin, min=0.0)
an = torch.clamp_min(sn.detach() + self.margin, min=0.0)
delta_p = 1 - self.margin
delta_n = self.margin
logit_p = -ap * (sp - delta_p) * self.gamma
logit_n = an * (sn - delta_n) * self.gamma
loss = self.soft_plus(torch.logsumexp(logit_n, dim=0) + torch.logsumexp(logit_p, dim=0))
return loss
__all__ = ["CircleLoss"]