Runners¶
ISupervisedRunner¶
-
class
catalyst.runners.supervised.
ISupervisedRunner
(input_key: Any = 'features', output_key: Any = 'logits', target_key: str = 'targets', loss_key: str = 'loss')[source]¶ Bases:
catalyst.runners.runner.Runner
IRunner for experiments with supervised model.
- Parameters
input_key – key in
runner.batch
dict mapping for model inputoutput_key – key for
runner.batch
to store model outputtarget_key – key in
runner.batch
dict mapping for targetloss_key – key for
runner.batch_metrics
to store criterion loss output
Abstraction, please check out implementations for more details:
catalyst.runners.runner.SupervisedRunner
Note
ISupervisedRunner contains only the logic with batch handling.
ISupervisedRunner logic pseudocode:
batch = {"input_key": tensor, "target_key": tensor} output = model(batch["input_key"]) batch["output_key"] = output loss = criterion(batch["output_key"], batch["target_key"]) batch_metrics["loss_key"] = loss
Note
Please follow the minimal examples sections for use cases.
-
forward
(batch: Mapping[str, Any], **kwargs) → Mapping[str, Any][source]¶ Forward method for your Runner. Should not be called directly outside of runner. If your model has specific interface, override this method to use it
- Parameters
batch (Mapping[str, Any]) – dictionary with data batches from DataLoaders.
**kwargs – additional parameters to pass to the model
- Returns
dict with model output batch
Runner¶
-
class
catalyst.runners.runner.
Runner
(*args, **kwargs)[source]¶ Bases:
catalyst.core.runner.IRunner
Single-stage deep learning Runner with user-friendly API.
Runner supports the logic for deep learning pipeline configuration with pure python code. Please check the examples for intuition.
- Parameters
*args – IRunner args (model, engine)
**kwargs – IRunner kwargs (model, engine)
Note
IRunner supports only base user-friendly callbacks, like TqdmCallback, TimerCallback, CheckRunCallback, BatchOverfitCallback, and CheckpointCallback.
It does not automatically add Criterion, Optimizer or Scheduler callbacks.
That means, that you have do optimization step by yourself during
handle_batch
method or specify the required callbacks in.train
orget_callbacks
methods.For more easy-to-go supervised use case please follow
catalyst.runners.runner.SupervisedRunner
.Note
Please follow the minimal examples sections for use cases.
Examples:
import os from torch import nn, optim from torch.nn import functional as F from torch.utils.data import DataLoader from catalyst import dl, metrics from catalyst.contrib.datasets import MNIST model = nn.Sequential(nn.Flatten(), nn.Linear(28 * 28, 10)) optimizer = optim.Adam(model.parameters(), lr=0.02) loaders = { "train": DataLoader(MNIST(os.getcwd(), train=True), batch_size=32), "valid": DataLoader(MNIST(os.getcwd(), train=False), batch_size=32), } class CustomRunner(dl.Runner): def predict_batch(self, batch): # model inference step return self.model(batch[0].to(self.device)) def on_loader_start(self, runner): super().on_loader_start(runner) self.meters = { key: metrics.AdditiveMetric(compute_on_call=False) for key in ["loss", "accuracy01", "accuracy03"] } def handle_batch(self, batch): # model train/valid step # unpack the batch x, y = batch # run model forward pass logits = self.model(x) # compute the loss loss = F.cross_entropy(logits, y) # compute other metrics of interest accuracy01, accuracy03 = metrics.accuracy(logits, y, topk=(1, 3)) # log metrics self.batch_metrics.update( {"loss": loss, "accuracy01": accuracy01, "accuracy03": accuracy03} ) for key in ["loss", "accuracy01", "accuracy03"]: self.meters[key].update( self.batch_metrics[key].item(), self.batch_size ) # run model backward pass if self.is_train_loader: self.engine.backward(loss) self.optimizer.step() self.optimizer.zero_grad() def on_loader_end(self, runner): for key in ["loss", "accuracy01", "accuracy03"]: self.loader_metrics[key] = self.meters[key].compute()[0] super().on_loader_end(runner) runner = CustomRunner() # model training runner.train( model=model, optimizer=optimizer, loaders=loaders, logdir="./logs", num_epochs=5, verbose=True, valid_loader="valid", valid_metric="loss", minimize_valid_metric=True, ) # model inference for logits in runner.predict_loader(loader=loaders["valid"]): assert logits.detach().cpu().numpy().shape[-1] == 10
-
evaluate_loader
(loader: torch.utils.data.dataloader.DataLoader, callbacks: Union[List[Callback], OrderedDict[str, Callback]] = None, model: Optional[torch.nn.modules.module.Module] = None, engine: Union[Engine, str] = None, seed: int = 42, verbose: bool = False) → Dict[str, Any][source]¶ Evaluates dataloader with given model and returns obtained metrics.
- Parameters
loader – loader to predict
callbacks – list or dictionary with catalyst callbacks
model – model, compatible with current runner. If None simply takes current model from runner.
engine – engine to use for model evaluation
seed – random seed to use before prediction
verbose – if True, it displays the status of the evaluation to the console.
- Returns
Dict with metrics counted on the loader.
- Raises
IRunnerError – if
CheckpointCallback
found in the callbacks
-
get_criterion
() → Union[torch.nn.modules.module.Module, Dict[str, torch.nn.modules.module.Module], None][source]¶ Returns the criterion for the experiment.
-
get_loggers
() → Dict[str, catalyst.core.logger.ILogger][source]¶ Returns the loggers for the experiment.
-
get_model
() → Union[torch.nn.modules.module.Module, Dict[str, torch.nn.modules.module.Module]][source]¶ Returns the model for the experiment.
-
get_optimizer
(model: Union[torch.nn.modules.module.Module, Dict[str, torch.nn.modules.module.Module]]) → Union[torch.optim.optimizer.Optimizer, Dict[str, torch.optim.optimizer.Optimizer], None][source]¶ Returns the optimizer for the experiment.
-
get_scheduler
(optimizer: Union[torch.optim.optimizer.Optimizer, Dict[str, torch.optim.optimizer.Optimizer]]) → Union[torch.optim.lr_scheduler._LRScheduler, torch.optim.lr_scheduler.ReduceLROnPlateau, Dict[str, Union[torch.optim.lr_scheduler._LRScheduler, torch.optim.lr_scheduler.ReduceLROnPlateau]], None][source]¶ Returns the scheduler for the experiment.
-
property
hparams
¶ Returns hyperparameters.
-
property
num_epochs
¶ Returns the number of epochs in the experiment.
-
predict_batch
(batch: Mapping[str, Any], **kwargs) → Mapping[str, Any][source]¶ Run model inference on specified data batch.
- Parameters
batch – dictionary with data batches from DataLoader.
**kwargs – additional kwargs to pass to the model
- Returns: # noqa: DAR202
Mapping: model output dictionary
- Raises
NotImplementedError – if not implemented yet
-
predict_loader
(*, loader: torch.utils.data.dataloader.DataLoader, model: torch.nn.modules.module.Module = None, engine: Union[Engine, str] = None, seed: int = 42, resume: str = None, cpu: bool = False, fp16: bool = False) → Generator[source]¶ Runs model inference on PyTorch DataLoader and returns python generator with model predictions from runner.predict_batch.
- Parameters
loader – loader to predict
model – model to use for prediction
engine – engine to use for prediction
seed – random seed to use before prediction
resume – path to checkpoint for model
cpu – boolean flag to force CPU usage
fp16 – boolean flag to use half-precision
- Yields
bathes with model predictions
Note
Please follow the minimal examples sections for use cases.
-
property
seed
¶ Experiment’s initial seed value.
-
train
(*, loaders: OrderedDict[str, DataLoader], model: torch.nn.modules.module.Module = None, engine: Union[Engine, str] = None, criterion: torch.nn.modules.module.Module = None, optimizer: torch.optim.optimizer.Optimizer = None, scheduler: (<class 'torch.optim.lr_scheduler._LRScheduler'>, <class 'torch.optim.lr_scheduler.ReduceLROnPlateau'>) = None, callbacks: Union[List[Callback], OrderedDict[str, Callback]] = None, loggers: Dict[str, ILogger] = None, seed: int = 42, hparams: Dict[str, Any] = None, num_epochs: int = 1, logdir: str = None, resume: str = None, valid_loader: str = None, valid_metric: str = None, minimize_valid_metric: bool = None, verbose: bool = False, timeit: bool = False, check: bool = False, overfit: bool = False, profile: bool = False, load_best_on_end: bool = False, cpu: bool = False, fp16: bool = False, ddp: bool = False) → None[source]¶ Starts the training of the model.
- Parameters
loaders – dictionary with one or several
torch.utils.data.DataLoader
for training, validation or inferencemodel – model to train
engine – engine to use for model training
criterion – criterion function for training
optimizer – optimizer for training
scheduler – scheduler for training
callbacks – list or dictionary with Catalyst callbacks
loggers – dictionary with Catalyst loggers
seed – experiment’s initial seed value
hparams – hyperparameters for the run
num_epochs – number of training epochs
logdir – path to output directory
resume – path to checkpoint for model
valid_loader – loader name used to calculate the metrics and save the checkpoints. For example, you can pass train and then the metrics will be taken from train loader.
valid_metric – the key to the name of the metric by which the checkpoints will be selected.
minimize_valid_metric – flag to indicate whether the
valid_metric
should be minimized or not (default: True).verbose – if True, it displays the status of the training to the console.
timeit – if True, computes the execution time of training process and displays it to the console.
check – if True, then only checks that pipeline is working (3 epochs only with 3 batches per loader)
overfit – if True, then takes only one batch per loader for model overfitting, for advance usage please check
BatchOverfitCallback
profile – if True, then uses ProfilerCallback, for advance usage please check
ProfilerCallback
load_best_on_end – if True, Runner will load best checkpoint state (model, optimizer, etc) according to validation metrics. Requires specified
logdir
.cpu – boolean flag to force CPU usage
fp16 – boolean flag to use half-precision
ddp – if True will start training in distributed mode. Note: Works only with python scripts. No jupyter support.
Note
Please follow the minimal examples sections for use cases.
SupervisedRunner¶
-
class
catalyst.runners.supervised.
SupervisedRunner
(model: Union[torch.nn.modules.module.Module, Dict[str, torch.nn.modules.module.Module]] = None, engine: catalyst.core.engine.Engine = None, input_key: Any = 'features', output_key: Any = 'logits', target_key: str = 'targets', loss_key: str = 'loss')[source]¶ Bases:
catalyst.runners.supervised.ISupervisedRunner
,catalyst.runners.runner.Runner
Runner for experiments with supervised model.
- Parameters
model – Torch model instance
engine – Engine instance
input_key – key in
runner.batch
dict mapping for model inputoutput_key – key for
runner.batch
to store model outputtarget_key – key in
runner.batch
dict mapping for targetloss_key – key for
runner.batch_metrics
to store criterion loss output
SupervisedRunner logic pseudocode:
batch = {"input_key": tensor, "target_key": tensor} output = model(batch["input_key"]) batch["output_key"] = output loss = criterion(batch["output_key"], batch["target_key"]) batch_metrics["loss_key"] = loss
Note
Please follow the minimal examples sections for use cases.
-
predict_batch
(batch: Mapping[str, Any], **kwargs) → Mapping[str, Any][source]¶ Run model inference on specified data batch.
Warning
You should not override this method. If you need specific model call, override runner.forward() method.
- Parameters
batch – dictionary with data batch from DataLoader.
**kwargs – additional kwargs to pass to the model
- Returns
model output dictionary
- Return type
Mapping[str, Any]