Shortcuts

Runners

Runner Extensions

ISupervisedRunner

class catalyst.runners.supervised.ISupervisedRunner(input_key: Any = 'features', output_key: Any = 'logits', target_key: str = 'targets', loss_key: str = 'loss')[source]

Bases: catalyst.core.runner.IRunner

IRunner for experiments with supervised model.

Parameters
  • input_key – key in runner.batch dict mapping for model input

  • output_key – key for runner.batch to store model output

  • target_key – key in runner.batch dict mapping for target

  • loss_key – key for runner.batch_metrics to store criterion loss output

Abstraction, please check out implementations for more details:

Note

ISupervisedRunner contains only the logic with batch handling.

ISupervisedRunner logic pseudocode:

batch = {"input_key": tensor, "target_key": tensor}
output = model(batch["input_key"])
batch["output_key"] = output
loss = criterion(batch["output_key"], batch["target_key"])
batch_metrics["loss_key"] = loss

Note

Please follow the minimal examples sections for use cases.

Examples:

import os
from torch import nn, optim
from torch.utils.data import DataLoader
from catalyst import dl, utils
from catalyst.data import ToTensor
from catalyst.contrib.datasets import MNIST

model = nn.Sequential(nn.Flatten(), nn.Linear(28 * 28, 10))
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.02)

loaders = {
    "train": DataLoader(
        MNIST(os.getcwd(), train=True, download=True, transform=ToTensor()),
        batch_size=32
    ),
    "valid": DataLoader(
        MNIST(os.getcwd(), train=False, download=True, transform=ToTensor()),
        batch_size=32
    ),
}

runner = dl.SupervisedRunner(
    input_key="features", output_key="logits", target_key="targets", loss_key="loss"
)
# model training
runner.train(
    model=model,
    criterion=criterion,
    optimizer=optimizer,
    loaders=loaders,
    num_epochs=1,
    callbacks=[
        dl.AccuracyCallback(input_key="logits", target_key="targets", topk_args=(1, 3)),
        dl.PrecisionRecallF1SupportCallback(
            input_key="logits", target_key="targets", num_classes=10
        ),
        dl.AUCCallback(input_key="logits", target_key="targets"),
    ],
    logdir="./logs",
    valid_loader="valid",
    valid_metric="loss",
    minimize_valid_metric=True,
    verbose=True,
    load_best_on_end=True,
)
# model inference
for prediction in runner.predict_loader(loader=loaders["valid"]):
    assert prediction["logits"].detach().cpu().numpy().shape[-1] == 10
forward(batch: Mapping[str, Any], **kwargs) → Mapping[str, Any][source]

Forward method for your Runner. Should not be called directly outside of runner. If your model has specific interface, override this method to use it

Parameters
  • batch (Mapping[str, Any]) – dictionary with data batches from DataLoaders.

  • **kwargs – additional parameters to pass to the model

Returns

dict with model output batch

handle_batch(batch: Mapping[str, Any]) → None[source]

Inner method to handle specified data batch. Used to make a train/valid/infer stage during Experiment run.

Parameters

batch – dictionary with data batches from DataLoader.

Python API

Runner

class catalyst.runners.runner.Runner(*args, **kwargs)[source]

Bases: catalyst.core.runner.IRunner

Single-stage deep learning Runner with user-friendly API.

Runner supports the logic for deep learning pipeline configuration with pure python code. Please check the examples for intuition.

Parameters
  • *argsIRunner args (model, engine)

  • **kwargsIRunner kwargs (model, engine)

Note

IRunner supports only base user-friendly callbacks, like TqdmCallback, TimerCallback, CheckRunCallback, BatchOverfitCallback, and CheckpointCallback.

It does not automatically add Criterion, Optimizer or Scheduler callbacks.

That means, that you have do optimization step by yourself during handle_batch method or specify the required callbacks in .train or get_callbacks methods.

For more easy-to-go supervised use case please follow catalyst.runners.runner.SupervisedRunner.

Note

Please follow the minimal examples sections for use cases.

Examples:

import os
from torch import nn, optim
from torch.nn import functional as F
from torch.utils.data import DataLoader
from catalyst import dl, metrics
from catalyst.data import ToTensor
from catalyst.contrib.datasets import MNIST

model = nn.Sequential(nn.Flatten(), nn.Linear(28 * 28, 10))
optimizer = optim.Adam(model.parameters(), lr=0.02)

loaders = {
    "train": DataLoader(
        MNIST(os.getcwd(), train=True, download=True, transform=ToTensor()),
        batch_size=32
    ),
    "valid": DataLoader(
        MNIST(os.getcwd(), train=False, download=True, transform=ToTensor()),
        batch_size=32
    ),
}

class CustomRunner(dl.Runner):
    def predict_batch(self, batch):
        # model inference step
        return self.model(batch[0].to(self.device))

    def on_loader_start(self, runner):
        super().on_loader_start(runner)
        self.meters = {
            key: metrics.AdditiveValueMetric(compute_on_call=False)
            for key in ["loss", "accuracy01", "accuracy03"]
        }

    def handle_batch(self, batch):
        # model train/valid step
        # unpack the batch
        x, y = batch
        # run model forward pass
        logits = self.model(x)
        # compute the loss
        loss = F.cross_entropy(logits, y)
        # compute other metrics of interest
        accuracy01, accuracy03 = metrics.accuracy(logits, y, topk=(1, 3))
        # log metrics
        self.batch_metrics.update(
            {"loss": loss, "accuracy01": accuracy01, "accuracy03": accuracy03}
        )
        for key in ["loss", "accuracy01", "accuracy03"]:
            self.meters[key].update(self.batch_metrics[key].item(), self.batch_size)
        # run model backward pass
        if self.is_train_loader:
            loss.backward()
            self.optimizer.step()
            self.optimizer.zero_grad()

    def on_loader_end(self, runner):
        for key in ["loss", "accuracy01", "accuracy03"]:
            self.loader_metrics[key] = self.meters[key].compute()[0]
        super().on_loader_end(runner)

runner = CustomRunner()
# model training
runner.train(
    model=model,
    optimizer=optimizer,
    loaders=loaders,
    logdir="./logs",
    num_epochs=5,
    verbose=True,
    valid_loader="valid",
    valid_metric="loss",
    minimize_valid_metric=True,
)
# model inference
for logits in runner.predict_loader(loader=loaders["valid"]):
    assert logits.detach().cpu().numpy().shape[-1] == 10
evaluate_loader(loader: torch.utils.data.dataloader.DataLoader, callbacks: Union[List[Callback], OrderedDict[str, Callback]] = None, model: Optional[torch.nn.modules.module.Module] = None, seed: int = 42, verbose: bool = False) → Dict[source]

Evaluates data from loader with given model and returns obtained metrics. # noqa: DAR401

Parameters
  • loader – loader to predict

  • callbacks – list or dictionary with catalyst callbacks

  • model – model, compatible with current runner. If None simply takes current model from runner.

  • seed – random seed to use before prediction

  • verbose – if True, it displays the status of the evaluation to the console.

Returns

Dict with metrics counted on the loader.

get_callbacks(stage: str) → OrderedDict[str, Callback][source]

Returns the callbacks for a given stage.

get_criterion(stage: str) → torch.nn.modules.module.Module[source]

Returns the criterion for a given stage.

get_engine() → catalyst.core.engine.IEngine[source]

Returns the engine for a run.

get_loaders(stage: str) → OrderedDict[str, DataLoader][source]

Returns the loaders for a given stage.

get_loggers() → Dict[str, catalyst.core.logger.ILogger][source]

Returns the logger for a run.

get_model(stage: str) → torch.nn.modules.module.Module[source]

Returns the model for a given stage.

get_optimizer(stage: str, model: torch.nn.modules.module.Module) → torch.optim.optimizer.Optimizer[source]

Returns the optimizer for a given stage.

get_scheduler(stage: str, optimizer: torch.optim.optimizer.Optimizer) → torch.optim.lr_scheduler._LRScheduler[source]

Returns the scheduler for a given stage.

get_stage_len(stage: str) → int[source]

Returns the stage length in epochs for a given stage.

get_trial() → catalyst.core.trial.ITrial[source]

Returns the trial for a run.

property hparams

Returns hyperparameters.

property name

Returns run name.

predict_batch(batch: Mapping[str, Any], **kwargs) → Mapping[str, Any][source]

Run model inference on specified data batch.

Parameters
  • batch – dictionary with data batches from DataLoader.

  • **kwargs – additional kwargs to pass to the model

Returns

model output dictionary

Return type

Mapping

Raises

NotImplementedError – if not implemented yet

predict_loader(*, loader: torch.utils.data.dataloader.DataLoader, model: torch.nn.modules.module.Module = None, engine: Union[IEngine, str] = None, seed: int = 42, fp16: bool = False, amp: bool = False, apex: bool = False, ddp: bool = False) → Generator[source]

Runs model inference on PyTorch DataLoader and returns python generator with model predictions from runner.predict_batch.

Parameters
  • loader – loader to predict

  • model – model to use for prediction

  • engine – engine to use for prediction

  • seed – random seed to use before prediction

  • fp16 – boolean flag to use half-precision training (AMP > APEX)

  • amp – boolean flag to use amp half-precision

  • apex – boolean flag to use apex half-precision

  • ddp – if True will start training in distributed mode. Note: Works only with python scripts. No jupyter support.

Yields

bathes with model predictions

Note

Please follow the minimal examples sections for use cases.

Examples:

import os
from torch import nn, optim
from torch.nn import functional as F
from torch.utils.data import DataLoader
from catalyst import dl, metrics
from catalyst.data import ToTensor
from catalyst.contrib.datasets import MNIST

model = nn.Sequential(nn.Flatten(), nn.Linear(28 * 28, 10))
optimizer = optim.Adam(model.parameters(), lr=0.02)

loaders = {
    "train": DataLoader(
        MNIST(os.getcwd(), train=True, download=True, transform=ToTensor()),
        batch_size=32
    ),
    "valid": DataLoader(
        MNIST(os.getcwd(), train=False, download=True, transform=ToTensor()),
        batch_size=32
    ),
}

class CustomRunner(dl.Runner):
    def predict_batch(self, batch):
        # model inference step
        return self.model(batch[0].to(self.device))

    def on_loader_start(self, runner):
        super().on_loader_start(runner)
        self.meters = {
            key: metrics.AdditiveValueMetric(compute_on_call=False)
            for key in ["loss", "accuracy01", "accuracy03"]
        }

    def handle_batch(self, batch):
        # model train/valid step
        # unpack the batch
        x, y = batch
        # run model forward pass
        logits = self.model(x)
        # compute the loss
        loss = F.cross_entropy(logits, y)
        # compute other metrics of interest
        accuracy01, accuracy03 = metrics.accuracy(logits, y, topk=(1, 3))
        # log metrics
        self.batch_metrics.update(
            {"loss": loss, "accuracy01": accuracy01, "accuracy03": accuracy03}
        )
        for key in ["loss", "accuracy01", "accuracy03"]:
            self.meters[key].update(
                self.batch_metrics[key].item(),
                self.batch_size
            )
        # run model backward pass
        if self.is_train_loader:
            loss.backward()
            self.optimizer.step()
            self.optimizer.zero_grad()

    def on_loader_end(self, runner):
        for key in ["loss", "accuracy01", "accuracy03"]:
            self.loader_metrics[key] = self.meters[key].compute()[0]
        super().on_loader_end(runner)

runner = CustomRunner()
# model training
runner.train(
    model=model,
    optimizer=optimizer,
    loaders=loaders,
    logdir="./logs",
    num_epochs=5,
    verbose=True,
    valid_loader="valid",
    valid_metric="loss",
    minimize_valid_metric=True,
)
# model inference
for logits in runner.predict_loader(loader=loaders["valid"]):
    assert logits.detach().cpu().numpy().shape[-1] == 10
property seed

Experiment’s initial seed value.

property stages

Experiment’s stage names (array with one value).

train(*, loaders: OrderedDict[str, DataLoader], model: torch.nn.modules.module.Module, engine: Union[IEngine, str] = None, trial: catalyst.core.trial.ITrial = None, criterion: torch.nn.modules.module.Module = None, optimizer: torch.optim.optimizer.Optimizer = None, scheduler: torch.optim.lr_scheduler._LRScheduler = None, callbacks: Union[List[Callback], OrderedDict[str, Callback]] = None, loggers: Dict[str, ILogger] = None, seed: int = 42, hparams: Dict[str, Any] = None, num_epochs: int = 1, logdir: str = None, valid_loader: str = None, valid_metric: str = None, minimize_valid_metric: bool = True, verbose: bool = False, timeit: bool = False, check: bool = False, overfit: bool = False, load_best_on_end: bool = False, fp16: bool = False, amp: bool = False, apex: bool = False, ddp: bool = False) → None[source]

Starts the train stage of the model.

Parameters
  • loaders – dictionary with one or several torch.utils.data.DataLoader for training, validation or inference

  • model – model to train

  • engine – engine to use for model training

  • trial – trial to use during model training

  • criterion – criterion function for training

  • optimizer – optimizer for training

  • scheduler – scheduler for training

  • callbacks – list or dictionary with Catalyst callbacks

  • loggers – dictionary with Catalyst loggers

  • seed – experiment’s initial seed value

  • hparams – hyperparameters for the run

  • num_epochs – number of training epochs

  • logdir – path to output directory

  • valid_loader – loader name used to calculate the metrics and save the checkpoints. For example, you can pass train and then the metrics will be taken from train loader.

  • valid_metric – the key to the name of the metric by which the checkpoints will be selected.

  • minimize_valid_metric – flag to indicate whether the valid_metric should be minimized or not (default: True).

  • verbose – if True, it displays the status of the training to the console.

  • timeit – if True, computes the execution time of training process and displays it to the console.

  • check – if True, then only checks that pipeline is working (3 epochs only with 3 batches per loader)

  • overfit – if True, then takes only one batch per loader for model overfitting, for advance usage please check BatchOverfitCallback

  • load_best_on_end – if True, Runner will load best checkpoint state (model, optimizer, etc) according to validation metrics. Requires specified logdir.

  • fp16 – boolean flag to use half-precision training (AMP > APEX)

  • amp – boolean flag to use amp half-precision

  • apex – boolean flag to use apex half-precision

  • ddp – if True will start training in distributed mode. Note: Works only with python scripts. No jupyter support.

Note

Please follow the minimal examples sections for use cases.

Examples:

import os
from torch import nn, optim
from torch.nn import functional as F
from torch.utils.data import DataLoader
from catalyst import dl, metrics
from catalyst.data import ToTensor
from catalyst.contrib.datasets import MNIST

model = nn.Sequential(nn.Flatten(), nn.Linear(28 * 28, 10))
optimizer = optim.Adam(model.parameters(), lr=0.02)

loaders = {
    "train": DataLoader(
        MNIST(os.getcwd(), train=True, download=True, transform=ToTensor()),
        batch_size=32
    ),
    "valid": DataLoader(
        MNIST(os.getcwd(), train=False, download=True, transform=ToTensor()),
        batch_size=32
    ),
}

class CustomRunner(dl.Runner):
    def predict_batch(self, batch):
        # model inference step
        return self.model(batch[0].to(self.device))

    def on_loader_start(self, runner):
        super().on_loader_start(runner)
        self.meters = {
            key: metrics.AdditiveValueMetric(compute_on_call=False)
            for key in ["loss", "accuracy01", "accuracy03"]
        }

    def handle_batch(self, batch):
        # model train/valid step
        # unpack the batch
        x, y = batch
        # run model forward pass
        logits = self.model(x)
        # compute the loss
        loss = F.cross_entropy(logits, y)
        # compute other metrics of interest
        accuracy01, accuracy03 = metrics.accuracy(logits, y, topk=(1, 3))
        # log metrics
        self.batch_metrics.update(
            {"loss": loss, "accuracy01": accuracy01, "accuracy03": accuracy03}
        )
        for key in ["loss", "accuracy01", "accuracy03"]:
            self.meters[key].update(
                self.batch_metrics[key].item(),
                self.batch_size
            )
        # run model backward pass
        if self.is_train_loader:
            loss.backward()
            self.optimizer.step()
            self.optimizer.zero_grad()

    def on_loader_end(self, runner):
        for key in ["loss", "accuracy01", "accuracy03"]:
            self.loader_metrics[key] = self.meters[key].compute()[0]
        super().on_loader_end(runner)

runner = CustomRunner()
# model training
runner.train(
    model=model,
    optimizer=optimizer,
    loaders=loaders,
    logdir="./logs",
    num_epochs=5,
    verbose=True,
    valid_loader="valid",
    valid_metric="loss",
    minimize_valid_metric=True,
)
# model inference
for logits in runner.predict_loader(loader=loaders["valid"]):
    assert logits.detach().cpu().numpy().shape[-1] == 10

SupervisedRunner

class catalyst.runners.runner.SupervisedRunner(model: Union[torch.nn.modules.module.Module, Dict[str, torch.nn.modules.module.Module]] = None, engine: catalyst.core.engine.IEngine = None, input_key: Any = 'features', output_key: Any = 'logits', target_key: str = 'targets', loss_key: str = 'loss')[source]

Bases: catalyst.runners.supervised.ISupervisedRunner, catalyst.runners.runner.Runner

Runner for experiments with supervised model.

Parameters
  • model – Torch model instance

  • engine – IEngine instance

  • input_key – key in runner.batch dict mapping for model input

  • output_key – key for runner.batch to store model output

  • target_key – key in runner.batch dict mapping for target

  • loss_key – key for runner.batch_metrics to store criterion loss output

Note

Please follow the minimal examples sections for use cases.

Examples:

import os
from torch import nn, optim
from torch.utils.data import DataLoader
from catalyst import dl, utils
from catalyst.data import ToTensor
from catalyst.contrib.datasets import MNIST

model = nn.Sequential(nn.Flatten(), nn.Linear(28 * 28, 10))
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.02)

loaders = {
    "train": DataLoader(
        MNIST(os.getcwd(), train=True, download=True, transform=ToTensor()),
        batch_size=32
    ),
    "valid": DataLoader(
        MNIST(os.getcwd(), train=False, download=True, transform=ToTensor()),
        batch_size=32
    ),
}

runner = dl.SupervisedRunner(
    input_key="features", output_key="logits", target_key="targets", loss_key="loss"
)
# model training
runner.train(
    model=model,
    criterion=criterion,
    optimizer=optimizer,
    loaders=loaders,
    num_epochs=1,
    callbacks=[
        dl.AccuracyCallback(input_key="logits", target_key="targets", topk_args=(1, 3)),
        dl.PrecisionRecallF1SupportCallback(
            input_key="logits", target_key="targets", num_classes=10
        ),
        dl.AUCCallback(input_key="logits", target_key="targets"),
    ],
    logdir="./logs",
    valid_loader="valid",
    valid_metric="loss",
    minimize_valid_metric=True,
    verbose=True,
    load_best_on_end=True,
)
# model inference
for prediction in runner.predict_loader(loader=loaders["valid"]):
    assert prediction["logits"].detach().cpu().numpy().shape[-1] == 10
get_callbacks(stage: str) → OrderedDict[str, Callback][source]

Prepares the callbacks for selected stage.

Parameters

stage – stage name

Returns

dictionary with stage callbacks

predict_batch(batch: Mapping[str, Any], **kwargs) → Mapping[str, Any][source]

Run model inference on specified data batch.

Warning

You should not override this method. If you need specific model call, override forward() method

Parameters
  • batch – dictionary with data batch from DataLoader.

  • **kwargs – additional kwargs to pass to the model

Returns

model output dictionary

Return type

Mapping[str, Any]

Config API

ConfigRunner

class catalyst.runners.config.ConfigRunner(config: Dict)[source]

Bases: catalyst.core.runner.IRunner

Runner created from a dictionary configuration file. Used for Catalyst Config API.

Parameters

config – dictionary with parameters

Note

Please follow the minimal examples sections for use cases.

Examples:

dataset = SomeDataset()
runner = SupervisedConfigRunner(
    config={
        "args": {"logdir": logdir},
        "model": {"_target_": "SomeModel", "in_features": 4, "out_features": 2},
        "engine": {"_target_": "DeviceEngine", "device": device},
        "stages": {
            "stage1": {
                "num_epochs": 10,
                "criterion": {"_target_": "MSELoss"},
                "optimizer": {"_target_": "Adam", "lr": 1e-3},
                "loaders": {"batch_size": 4, "num_workers": 0},
                "callbacks": {
                    "criterion": {
                        "_target_": "CriterionCallback",
                        "metric_key": "loss",
                        "input_key": "logits",
                        "target_key": "targets",
                    },
                    "optimizer": {
                        "_target_": "OptimizerCallback",
                        "metric_key": "loss"
                    },
                },
            },
        },
    }
)
runner.get_datasets = lambda *args, **kwargs: {
    "train": dataset,
    "valid": dataset,
}
runner.run()
get_callbacks(stage: str) → OrderedDict[str, Callback][source]

Returns the callbacks for a given stage.

get_criterion(stage: str) → Union[torch.nn.modules.module.Module, Dict[str, torch.nn.modules.module.Module]][source]

Returns the criterion for a given stage.

get_engine() → catalyst.core.engine.IEngine[source]

Returns the engine for the run.

get_loaders(stage: str) → OrderedDict[str, DataLoader][source]

Returns loaders for a given stage.

Parameters

stage – stage name

Returns

loaders objects

Return type

Dict

get_loggers() → Dict[str, catalyst.core.logger.ILogger][source]

Returns the loggers for the run.

get_model(stage: str) → Union[torch.nn.modules.module.Module, Dict[str, torch.nn.modules.module.Module]][source]

Returns the model for a given stage.

get_optimizer(model: Union[torch.nn.modules.module.Module, Dict[str, torch.nn.modules.module.Module]], stage: str) → Union[torch.optim.optimizer.Optimizer, Dict[str, torch.optim.optimizer.Optimizer]][source]

Returns the optimizer for a given stage and epoch.

Parameters
  • model – model or a dict of models

  • stage – current stage name

Returns

optimizer for selected stage and epoch

get_scheduler(optimizer: Union[torch.optim.optimizer.Optimizer, Dict[str, torch.optim.optimizer.Optimizer]], stage: str) → Union[torch.optim.lr_scheduler._LRScheduler, Dict[str, torch.optim.lr_scheduler._LRScheduler]][source]

Returns the scheduler for a given stage.

get_stage_len(stage: str) → int[source]

Returns number of epochs for the selected stage.

Parameters

stage – current stage

Returns

number of epochs in stage

Example:

>>> runner.get_stage_len("pretraining")
3
get_trial() → catalyst.core.trial.ITrial[source]

Returns the trial for the run.

property hparams

Returns hyper parameters

property logdir

Experiment’s logdir for artefacts and logging.

property name

Returns run name for monitoring tools.

property seed

Experiment’s seed for reproducibility.

property stages

Experiment’s stage names.

SupervisedConfigRunner

class catalyst.runners.config.SupervisedConfigRunner(config: Dict = None, input_key: Any = 'features', output_key: Any = 'logits', target_key: str = 'targets', loss_key: str = 'loss')[source]

Bases: catalyst.runners.supervised.ISupervisedRunner, catalyst.runners.config.ConfigRunner

ConfigRunner for supervised tasks

Parameters
  • config – dictionary with parameters

  • input_key – key in runner.batch dict mapping for model input

  • output_key – key for runner.batch to store model output

  • target_key – key in runner.batch dict mapping for target

  • loss_key – key for runner.batch_metrics to store criterion loss output

Note

Please follow the minimal examples sections for use cases.

Examples:

dataset = SomeDataset()
runner = SupervisedConfigRunner(
    config={
        "args": {"logdir": logdir},
        "model": {"_target_": "SomeModel", "in_features": 4, "out_features": 2},
        "engine": {"_target_": "DeviceEngine", "device": device},
        "stages": {
            "stage1": {
                "num_epochs": 10,
                "criterion": {"_target_": "MSELoss"},
                "optimizer": {"_target_": "Adam", "lr": 1e-3},
                "loaders": {"batch_size": 4, "num_workers": 0},
                "callbacks": {
                    "criterion": {
                        "_target_": "CriterionCallback",
                        "metric_key": "loss",
                        "input_key": "logits",
                        "target_key": "targets",
                    },
                    "optimizer": {
                        "_target_": "OptimizerCallback",
                        "metric_key": "loss"
                    },
                },
            },
        },
    }
)
runner.get_datasets = lambda *args, **kwargs: {
    "train": dataset,
    "valid": dataset,
}
runner.run()

Hydra API

HydraRunner

class catalyst.runners.hydra.HydraRunner(cfg: omegaconf.dictconfig.DictConfig)[source]

Bases: catalyst.core.runner.IRunner

Runner created from a hydra configuration file.

Parameters

cfg – Hydra dictionary with parameters

Note

Please follow the minimal examples sections for use cases.

get_callbacks(stage: str) → OrderedDict[str, Callback][source]

Returns the callbacks for a given stage.

get_criterion(stage: str) → Union[torch.nn.modules.module.Module, Dict[str, torch.nn.modules.module.Module]][source]

Returns the criterion for a given stage.

get_engine() → catalyst.core.engine.IEngine[source]

Returns the engine for the run.

get_loaders(stage: str) → Dict[str, torch.utils.data.dataloader.DataLoader][source]

Returns loaders for a given stage.

Parameters

stage – stage name

Returns

loaders objects

Return type

Dict

get_loggers() → Dict[str, catalyst.core.logger.ILogger][source]

Returns the loggers for the run.

get_model(stage: str) → Union[torch.nn.modules.module.Module, Dict[str, torch.nn.modules.module.Module]][source]

Returns the model for a given stage.

get_optimizer(model: Union[torch.nn.modules.module.Module, Dict[str, torch.nn.modules.module.Module]], stage: str) → Union[torch.optim.optimizer.Optimizer, Dict[str, torch.optim.optimizer.Optimizer]][source]

Returns the optimizer for a given stage and epoch.

Parameters
  • model – model or a dict of models

  • stage – current stage name

Returns

optimizer for selected stage and epoch

get_scheduler(optimizer: Union[torch.optim.optimizer.Optimizer, Dict[str, torch.optim.optimizer.Optimizer]], stage: str) → Union[torch.optim.lr_scheduler._LRScheduler, Dict[str, torch.optim.lr_scheduler._LRScheduler]][source]

Returns the schedulers for a given stage.

get_stage_len(stage: str) → int[source]

Returns number of epochs for the selected stage.

Parameters

stage – current stage

Returns

number of epochs in stage

Example:

>>> runner.get_stage_len("pretraining")
3
get_trial() → catalyst.core.trial.ITrial[source]

Returns the trial for the run.

property hparams

Hyperparameters

property logdir

Experiment’s logdir for artefacts and logging.

property name

Returns run name for monitoring tools.

property seed

Experiment’s seed for reproducibility.

property stages

Experiment’s stage names.

SupervisedHydraRunner

class catalyst.runners.hydra.SupervisedHydraRunner(cfg: omegaconf.dictconfig.DictConfig = None, input_key: Any = 'features', output_key: Any = 'logits', target_key: str = 'targets', loss_key: str = 'loss')[source]

Bases: catalyst.runners.supervised.ISupervisedRunner, catalyst.runners.hydra.HydraRunner

HydraRunner for supervised tasks

Parameters
  • cfg – Hydra dictionary with parameters

  • input_key – key in runner.batch dict mapping for model input

  • output_key – key for runner.batch to store model output

  • target_key – key in runner.batch dict mapping for target

  • loss_key – key for runner.batch_metrics to store criterion loss output

Note

Please follow the minimal examples sections for use cases.