Shortcuts

Source code for catalyst.contrib.dl.callbacks.trace

from typing import Union  # isort:skip

from pathlib import Path
import warnings

from catalyst.core.callback import Callback, CallbackNode, CallbackOrder
from catalyst.core.runner import _Runner
from catalyst.dl.utils import save_traced_model, trace_model_from_runner


[docs]class TracerCallback(Callback): """ Traces model during training if `metric` provided is improved. """
[docs] def __init__( self, metric: str = "loss", minimize: bool = True, min_delta: float = 1e-6, mode: str = "best", do_once: bool = True, method_name: str = "forward", requires_grad: bool = False, opt_level: str = None, trace_mode: str = "eval", out_dir: Union[str, Path] = None, out_model: Union[str, Path] = None, ): """ Args: metric (str): Metric key we should trace model based on minimize (bool): Whether do we minimize metric or not min_delta (float): Minimum value of change for metric to be considered as improved mode (str): One of `best` or `last` do_once (str): Whether do we trace once per stage or every epoch method_name (str): Model's method name that will be used as entrypoint during tracing requires_grad (bool): Flag to use grads opt_level (str): AMP FP16 init level trace_mode (str): Mode for model to trace (``train`` or ``eval``) out_dir (Union[str, Path]): Directory to save model to out_model (Union[str, Path]): Path to save model to (overrides `out_dir` argument) """ super().__init__(order=CallbackOrder.External, node=CallbackNode.All) if trace_mode not in ["train", "eval"]: raise ValueError( f"Unknown `trace_mode` '{trace_mode}'. " f"Must be 'eval' or 'train'" ) if mode not in ["best", "last"]: raise ValueError( f"Unknown `mode` '{mode}'. " f"Must be 'best' or 'last'" ) if opt_level is not None: warnings.warn( "TracerCallback: " "`opt_level` is not supported yet, " "model will be traced as is", stacklevel=2, ) self.metric = metric self.mode = mode self.do_once = do_once self.best_score = None self.is_better = None if minimize: self.is_better = lambda score, best: score <= (best - min_delta) else: self.is_better = lambda score, best: score >= (best + min_delta) self.requires_grad = requires_grad self.method_name = method_name self.trace_mode = trace_mode self.opt_level = None if out_model is not None: out_model = Path(out_model) self.out_model = out_model if out_dir is not None: out_dir = Path(out_dir) self.out_dir = out_dir
def _trace(self, runner: _Runner): """ Performing model tracing on epoch end if condition metric is improved. Args: runner (_Runner): Current runner """ if self.opt_level is not None: device = "cuda" else: device = "cpu" # the only case we need to restore model from previous checkpoint # is when we need to trace best model only once in the end of stage checkpoint_name_to_restore = None if self.do_once and self.mode == "best": checkpoint_name_to_restore = "best" traced_model = trace_model_from_runner( runner=runner, checkpoint_name=checkpoint_name_to_restore, method_name=self.method_name, mode=self.trace_mode, requires_grad=self.requires_grad, opt_level=self.opt_level, device=device, ) save_traced_model( model=traced_model, logdir=runner.logdir, checkpoint_name=self.mode, method_name=self.method_name, mode=self.trace_mode, requires_grad=self.requires_grad, opt_level=self.opt_level, out_model=self.out_model, out_dir=self.out_dir, )
[docs] def on_epoch_end(self, runner: _Runner): """ Performing model tracing on epoch end if condition metric is improved Args: runner (_Runner): Current runner """ if not self.do_once: if self.mode == "best": score = runner.valid_metrics[self.metric] if self.best_score is None: self.best_score = score # TODO: EarlyStoppingCallback and TracerCallback # will never work very first epoch if self.is_better(score, self.best_score): self.best_score = score self._trace(runner) else: self._trace(runner)
[docs] def on_stage_end(self, runner: _Runner): """ Performing model tracing on stage end if `do_once` is True. Args: runner (_Runner): Current runner """ if self.do_once: self._trace(runner)
__all__ = ["TracerCallback"]