Contrib¶
Data¶
Transforms¶
This subpackage was borrowed from torchvision(https://github.com/pytorch/vision).
-
class
catalyst.contrib.data.transforms.
Compose
(transforms)[source]¶ Bases:
object
Composes several transforms together.
-
class
catalyst.contrib.data.transforms.
Normalize
(mean, std, inplace=False)[source]¶ Bases:
object
Normalize a tensor image with mean and standard deviation.
Given mean:
(mean[1],...,mean[n])
and std:(std[1],..,std[n])
forn
channels, this transform will normalize each channel of the inputtorch.*Tensor
i.e.,output[channel] = (input[channel] - mean[channel]) / std[channel]
Note
- This transform acts out of place, i.e.,
it does not mutate the input tensor.
-
class
catalyst.contrib.data.transforms.
ToTensor
[source]¶ Bases:
object
Convert a
numpy.ndarray
to tensor. Converts numpy.ndarray (H x W x C) in the range [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0] if the numpy.ndarray has dtype = np.uint8 In the other cases, tensors are returned without scaling.
-
catalyst.contrib.data.transforms.
normalize
(tensor, mean, std, inplace=False)[source]¶ Normalize a tensor image with mean and standard deviation.
Note
- This transform acts out of place by default, i.e.,
it does not mutates the input tensor.
- Parameters
tensor (Tensor) – Tensor image of size (C, H, W) to be normalized.
mean (sequence) – Sequence of means for each channel.
std (sequence) – Sequence of standard deviations for each channel.
inplace (bool,optional) – Bool to make this operation inplace.
- Returns
Normalized Tensor image.
- Return type
Tensor
Computer Vision¶
Mixins¶
-
class
catalyst.contrib.data.cv.mixins.blur.
BlurMixin
(input_key: str = 'image', output_key: str = 'blur_factor', blur_min: int = 3, blur_max: int = 9, blur: List[str] = None)[source]¶ Bases:
object
Calculates blur factor for augmented image.
-
class
catalyst.contrib.data.cv.mixins.flare.
FlareMixin
(input_key: str = 'image', output_key: str = 'flare_factor', sunflare_params: Dict = None)[source]¶ Bases:
object
Calculates flare factor for augmented image.
-
__init__
(input_key: str = 'image', output_key: str = 'flare_factor', sunflare_params: Dict = None)[source]¶ - Parameters
input_key (str) – input key to use from annotation dict
output_key (str) – output key to use to store the result
sunflare_params (dict) – params to init
albumentations.RandomSunFlare
-
-
class
catalyst.contrib.data.cv.mixins.rotate.
RotateMixin
(input_key: str = 'image', output_key: str = 'rotation_factor', targets_key: str = None, rotate_probability: float = 1.0, hflip_probability: float = 0.5, one_hot_classes: int = None)[source]¶ Bases:
object
Calculates rotation factor for augmented image.
-
__init__
(input_key: str = 'image', output_key: str = 'rotation_factor', targets_key: str = None, rotate_probability: float = 1.0, hflip_probability: float = 0.5, one_hot_classes: int = None)[source]¶ - Parameters
input_key (str) – input key to use from annotation dict
output_key (str) – output key to use to store the result
-
Transforms¶
-
class
catalyst.contrib.data.cv.transforms.tensor.
TensorToImage
(denormalize: bool = False, move_channels_dim: bool = True, always_apply: bool = False, p: float = 1.0)[source]¶ Bases:
albumentations.core.transforms_interface.ImageOnlyTransform
Casts
torch.tensor
tonumpy.array
.-
__init__
(denormalize: bool = False, move_channels_dim: bool = True, always_apply: bool = False, p: float = 1.0)[source]¶ - Parameters
denormalize (bool) – if True, multiply image(s) by ImageNet std and add ImageNet mean
move_channels_dim (bool) – if True, convert [B]xCxHxW tensor to [B]xHxWxC format
always_apply (bool) – need to apply this transform anyway
p (float) – probability for this transform
-
-
class
catalyst.contrib.data.cv.transforms.tensor.
ToTensor
(move_channels_dim: bool = True, always_apply: bool = False, p: float = 1.0)[source]¶ Bases:
albumentations.pytorch.transforms.ToTensorV2
Casts
numpy.array
totorch.tensor
.-
__init__
(move_channels_dim: bool = True, always_apply: bool = False, p: float = 1.0)[source]¶ - Parameters
move_channels_dim (bool) – if
False
, casts numpy array totorch.tensor
, but do not move channels dimalways_apply (bool) – need to apply this transform anyway
p (float) – probability for this transform
-
Reader¶
-
class
catalyst.contrib.data.cv.reader.
ImageReader
(input_key: str, output_key: str, rootpath: str = None, grayscale: bool = False)[source]¶ Bases:
catalyst.data.reader.ReaderSpec
Image reader abstraction. Reads images from a
csv
dataset.-
__init__
(input_key: str, output_key: str, rootpath: str = None, grayscale: bool = False)[source]¶ - Parameters
input_key (str) – key to use from annotation dict
output_key (str) – key to use to store the result
rootpath (str) – path to images dataset root directory (so your can use relative paths in annotations)
grayscale (bool) – flag if you need to work only with grayscale images
-
-
class
catalyst.contrib.data.cv.reader.
MaskReader
(input_key: str, output_key: str, rootpath: str = None, clip_range: Tuple[Union[int, float], Union[int, float]] = (0, 1))[source]¶ Bases:
catalyst.data.reader.ReaderSpec
Mask reader abstraction. Reads masks from a csv dataset.
-
__init__
(input_key: str, output_key: str, rootpath: str = None, clip_range: Tuple[Union[int, float], Union[int, float]] = (0, 1))[source]¶ - Parameters
input_key (str) – key to use from annotation dict
output_key (str) – key to use to store the result
rootpath (str) – path to images dataset root directory (so your can use relative paths in annotations)
clip_range (Tuple[int, int]) – lower and upper interval edges, image values outside the interval are clipped to the interval edges
-
Datasets¶
MNIST¶
-
class
catalyst.contrib.datasets.mnist.
MNIST
(root, train=True, transform=None, target_transform=None, download=False)[source]¶ Bases:
torch.utils.data.dataset.Dataset
MNIST Dataset.
-
__init__
(root, train=True, transform=None, target_transform=None, download=False)[source]¶ - Parameters
root (string) – Root directory of dataset where
MNIST/processed/training.pt
andMNIST/processed/test.pt
exist.train (bool, optional) – If True, creates dataset from
training.pt
, otherwise fromtest.pt
.download (bool, optional) – If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again.
transform (callable, optional) – A function/transform that takes in an image and returns a transformed version.
target_transform (callable, optional) – A function/transform that takes in the target and transforms it.
-
property
class_to_idx
¶ Docs. Contribution is welcome.
- Type
@TODO
-
classes
= ['0 - zero', '1 - one', '2 - two', '3 - three', '4 - four', '5 - five', '6 - six', '7 - seven', '8 - eight', '9 - nine']¶
-
property
processed_folder
¶ Docs. Contribution is welcome.
- Type
@TODO
-
property
raw_folder
¶ Docs. Contribution is welcome.
- Type
@TODO
-
resources
= [('http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz', 'f68b3c2dcbeaaa9fbdd348bbdeb94873'), ('http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz', 'd53e105ee54ea40749a09fcbcd1e9432'), ('http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz', '9fb629c4189551a2d022fa330f9573f3'), ('http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz', 'ec29112dd5afa0611ce80d1b7f02629c')]¶
-
test_file
= 'test.pt'¶
-
training_file
= 'training.pt'¶
-
-
catalyst.contrib.datasets.mnist.
open_maybe_compressed_file
(path)[source]¶ Return a file object that possibly decompresses ‘path’ on the fly. Decompression occurs when argument path is a string and ends with ‘.gz’ or ‘.xz’.
-
catalyst.contrib.datasets.mnist.
read_image_file
(path)[source]¶ @TODO: Docs. Contribution is welcome.
DL¶
Callbacks¶
AlchemyLogger¶
-
class
catalyst.contrib.dl.callbacks.alchemy.
AlchemyLogger
(metric_names: List[str] = None, log_on_batch_end: bool = True, log_on_epoch_end: bool = True, **logging_params)[source]¶ Bases:
catalyst.core.callback.Callback
Logger callback, translates
runner.*_metrics
to Alchemy. Read about Alchemy here https://alchemy.hostExample
from catalyst.dl import SupervisedRunner, AlchemyLogger runner = SupervisedRunner() runner.train( model=model, criterion=criterion, optimizer=optimizer, loaders=loaders, logdir=logdir, num_epochs=num_epochs, verbose=True, callbacks={ "logger": AlchemyLogger( token="...", # your Alchemy token project="your_project_name", experiment="your_experiment_name", group="your_experiment_group_name", ) } )
Powered by Catalyst.Ecosystem.
-
__init__
(metric_names: List[str] = None, log_on_batch_end: bool = True, log_on_epoch_end: bool = True, **logging_params)[source]¶ - Parameters
metric_names (List[str]) – list of metric names to log, if none - logs everything
log_on_batch_end (bool) – logs per-batch metrics if set True
log_on_epoch_end (bool) – logs per-epoch metrics if set True
-
CutmixCallback¶
-
class
catalyst.contrib.dl.callbacks.cutmix_callback.
CutmixCallback
(fields: List[str] = ('features', ), alpha=1.0, on_train_only=True, **kwargs)[source]¶ Bases:
catalyst.core.callbacks.criterion.CriterionCallback
Callback to do Cutmix augmentation that has been proposed in CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features.
Warning
catalyst.contrib.dl.callbacks.CutmixCallback
is inherited fromcatalyst.dl.CriterionCallback
and does its work. You may not use them together.-
__init__
(fields: List[str] = ('features', ), alpha=1.0, on_train_only=True, **kwargs)[source]¶ - Parameters
fields (List[str]) – list of features which must be affected.
alpha (float) – beta distribution parameter.
on_train_only (bool) – Apply to train only. So, if on_train_only is True, use a standard output/metric for validation.
-
InferMaskCallback¶
-
class
catalyst.contrib.dl.callbacks.inference.
InferMaskCallback
(out_dir=None, out_prefix=None, input_key=None, output_key=None, name_key=None, mean=None, std=None, threshold: float = 0.5, mask_strength: float = 0.5, mask_type: str = 'soft')[source]¶ Bases:
catalyst.core.callback.Callback
@TODO: Docs. Contribution is welcome.
-
__init__
(out_dir=None, out_prefix=None, input_key=None, output_key=None, name_key=None, mean=None, std=None, threshold: float = 0.5, mask_strength: float = 0.5, mask_type: str = 'soft')[source]¶ - Parameters
@TODO – Docs. Contribution is welcome
-
on_batch_end
(runner: catalyst.core.runner._Runner)[source]¶ Batch end hook.
- Parameters
runner (_Runner) – current runner
-
KNNMetricCallback¶
-
class
catalyst.contrib.dl.callbacks.knn.
KNNMetricCallback
(input_key: str = 'logits', output_key: str = 'targets', prefix: str = 'knn', num_classes: int = 2, class_names: dict = None, cv_loader_names: Dict[str, List[str]] = None, metric_fn: str = 'f1-score', knn_metric: str = 'euclidean', num_neighbors: int = 5)[source]¶ Bases:
catalyst.core.callback.Callback
A callback that returns single metric on
runner.on_loader_end
.-
__init__
(input_key: str = 'logits', output_key: str = 'targets', prefix: str = 'knn', num_classes: int = 2, class_names: dict = None, cv_loader_names: Dict[str, List[str]] = None, metric_fn: str = 'f1-score', knn_metric: str = 'euclidean', num_neighbors: int = 5)[source]¶ Returns metric value calculated using kNN algorithm.
- Parameters
input_key – input key to get features.
output_key – output key to get targets.
prefix – key to store in logs.
num_classes – Number of classes; must be > 1.
class_names – of indexes and class names.
cv_loader_names – dict with keys and values of loader_names for which cross validation should be calculated. For example {“train” : [“valid”, “test”]}.
metric_fn – one of accuracy, precision, recall, f1-score. default is f1-score.
knn_metric – look sklearn.neighbors.NearestNeighbors parameter.
num_neighbors – number of neighbors, default is 5.
-
on_batch_end
(runner: catalyst.core.runner._Runner) → None[source]¶ Batch end hook.
- Parameters
runner (_Runner) – current runner
-
NeptuneLogger¶
-
class
catalyst.contrib.dl.callbacks.neptune.
NeptuneLogger
(metric_names: List[str] = None, log_on_batch_end: bool = True, log_on_epoch_end: bool = True, offline_mode: bool = False, **logging_params)[source]¶ Bases:
catalyst.core.callback.Callback
Logger callback, translates
runner.*_metrics
to Neptune. Read about Neptune here https://neptune.aiExample
from catalyst.dl import SupervisedRunner from catalyst.contrib.dl.callbacks.neptune import NeptuneLogger runner = SupervisedRunner() runner.train( model=model, criterion=criterion, optimizer=optimizer, loaders=loaders, logdir=logdir, num_epochs=num_epochs, verbose=True, callbacks=[ NeptuneLogger( api_token="...", # your Neptune token project_name="your_project_name", offline_mode=False, # turn off neptune for debug name="your_experiment_name", params={...}, # your hyperparameters tags=["resnet", "no-augmentations"], # tags upload_source_files=["*.py"], # files to save ) ] )
You can see an example experiment here: https://ui.neptune.ai/o/shared/org/catalyst-integration/e/CAT-13/charts
You can log your experiments without registering. Just use “ANONYMOUS” token:
runner.train( ... callbacks=[ "NepuneLogger( api_token="ANONYMOUS", project_name="shared/catalyst-integration", ... ) ] )
-
__init__
(metric_names: List[str] = None, log_on_batch_end: bool = True, log_on_epoch_end: bool = True, offline_mode: bool = False, **logging_params)[source]¶ - Parameters
metric_names (List[str]) – list of metric names to log, if none - logs everything
log_on_batch_end (bool) – logs per-batch metrics if set True
log_on_epoch_end (bool) – logs per-epoch metrics if set True
offline_mode (bool) – whether logging to Neptune server should be turned off. It is useful for debugging
-
SaveModelGradsCallback¶
-
class
catalyst.contrib.dl.callbacks.optimizer.
SaveModelGradsCallback
(norm_type: int = 2, accumulation_steps: int = 1)[source]¶ Bases:
catalyst.core.callback.Callback
Callback for logging model gradients.
-
__init__
(norm_type: int = 2, accumulation_steps: int = 1)[source]¶ - Parameters
norm_type (int) – norm type used to calculate norm of gradients. If OptimizerCallback provides non-default argument grad_clip_params with custom norm type, then corresponding norm type should be used in this class.
accumulation_steps (int) – number of steps before
model.zero_grad()
. Should be the same as in OptimizerCallback.
-
static
grad_norm
(*, model: torch.nn.modules.module.Module, prefix: str, norm_type: int) → Dict[source]¶ Computes gradient norms for a given model.
- Parameters
model (Model) – model which gradients to be saved.
prefix (str) – prefix for keys in resulting dictionary.
norm_type (int) – norm type of gradient norm.
- Returns
dictionary in which gradient norms are stored.
- Return type
Dict
-
TelegramLogger¶
-
class
catalyst.contrib.dl.callbacks.telegram_logger.
TelegramLogger
(token: str = None, chat_id: str = None, metric_names: List[str] = None, log_on_stage_start: bool = True, log_on_loader_start: bool = True, log_on_loader_end: bool = True, log_on_stage_end: bool = True, log_on_exception: bool = True)[source]¶ Bases:
catalyst.core.callback.Callback
Logger callback, translates
runner.metric_manager
to telegram channel.-
__init__
(token: str = None, chat_id: str = None, metric_names: List[str] = None, log_on_stage_start: bool = True, log_on_loader_start: bool = True, log_on_loader_end: bool = True, log_on_stage_end: bool = True, log_on_exception: bool = True)[source]¶ - Parameters
token (str) – telegram bot’s token, see https://core.telegram.org/bots
chat_id (str) – Chat unique identifier
metric_names – List of metric names to log. if none - logs everything.
log_on_stage_start (bool) – send notification on stage start
log_on_loader_start (bool) – send notification on loader start
log_on_loader_end (bool) – send notification on loader end
log_on_stage_end (bool) – send notification on stage end
log_on_exception (bool) – send notification on exception
-
on_loader_end
(runner: catalyst.core.runner._Runner)[source]¶ Translate
runner.metric_manager
to telegram channel.
-
TracerCallback¶
-
class
catalyst.contrib.dl.callbacks.trace.
TracerCallback
(metric: str = 'loss', minimize: bool = True, min_delta: float = 1e-06, mode: str = 'best', do_once: bool = True, method_name: str = 'forward', requires_grad: bool = False, opt_level: str = None, trace_mode: str = 'eval', out_dir: Union[str, pathlib.Path] = None, out_model: Union[str, pathlib.Path] = None)[source]¶ Bases:
catalyst.core.callback.Callback
Traces model during training if metric provided is improved.
-
__init__
(metric: str = 'loss', minimize: bool = True, min_delta: float = 1e-06, mode: str = 'best', do_once: bool = True, method_name: str = 'forward', requires_grad: bool = False, opt_level: str = None, trace_mode: str = 'eval', out_dir: Union[str, pathlib.Path] = None, out_model: Union[str, pathlib.Path] = None)[source]¶ - Parameters
metric (str) – Metric key we should trace model based on
minimize (bool) – Whether do we minimize metric or not
min_delta (float) – Minimum value of change for metric to be considered as improved
mode (str) – One of best or last
do_once (str) – Whether do we trace once per stage or every epoch
method_name (str) – Model’s method name that will be used as entrypoint during tracing
requires_grad (bool) – Flag to use grads
opt_level (str) – AMP FP16 init level
trace_mode (str) – Mode for model to trace (
train
oreval
)out_dir (Union[str, Path]) – Directory to save model to
out_model (Union[str, Path]) – Path to save model to (overrides out_dir argument)
-
WandbLogger¶
-
class
catalyst.contrib.dl.callbacks.wandb.
WandbLogger
(metric_names: List[str] = None, log_on_batch_end: bool = False, log_on_epoch_end: bool = True, **logging_params)[source]¶ Bases:
catalyst.core.callback.Callback
Logger callback, translates
runner.*_metrics
to Weights & Biases. Read about Weights & Biases here https://docs.wandb.com/Example
from catalyst import dl import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader, TensorDataset class Projector(nn.Module): def __init__(self, input_size): super().__init__() self.linear = nn.Linear(input_size, 1) def forward(self, X): return self.linear(X).squeeze(-1) X = torch.rand(16, 10) y = torch.rand(X.shape[0]) model = Projector(X.shape[1]) dataset = TensorDataset(X, y) loader = DataLoader(dataset, batch_size=8) runner = dl.SupervisedRunner() runner.train( model=model, loaders={ "train": loader, "valid": loader }, criterion=nn.MSELoss(), optimizer=optim.Adam(model.parameters()), logdir="log_example", callbacks=[ dl.callbacks.WandbLogger( project="wandb_logger_example" ) ], num_epochs=10 )
-
__init__
(metric_names: List[str] = None, log_on_batch_end: bool = False, log_on_epoch_end: bool = True, **logging_params)[source]¶ - Parameters
metric_names (List[str]) – list of metric names to log, if None - logs everything
log_on_batch_end (bool) – logs per-batch metrics if set True
log_on_epoch_end (bool) – logs per-epoch metrics if set True
**logging_params – any parameters of function wandb.init except reinit which is automatically set to True and dir which is set to <logdir>
-
on_batch_end
(runner: catalyst.core.runner._Runner)[source]¶ Translate batch metrics to Weights & Biases.
-
on_epoch_end
(runner: catalyst.core.runner._Runner)[source]¶ Translate epoch metrics to Weights & Biases.
-
NN¶
Extensions for torch.nn
Criterion¶
Cross entropy¶
-
class
catalyst.contrib.nn.criterion.ce.
MaskCrossEntropyLoss
(*args, target_name: str = 'targets', mask_name: str = 'mask', **kwargs)[source]¶ Bases:
torch.nn.modules.loss.CrossEntropyLoss
@TODO: Docs. Contribution is welcome.
-
class
catalyst.contrib.nn.criterion.ce.
SymmetricCrossEntropyLoss
(alpha: float = 1.0, beta: float = 1.0)[source]¶ Bases:
torch.nn.modules.module.Module
The Symmetric Cross Entropy loss.
It has been proposed in Symmetric Cross Entropy for Robust Learning with Noisy Labels.
-
__init__
(alpha: float = 1.0, beta: float = 1.0)[source]¶ - Parameters
alpha (float) – corresponds to overfitting issue of CE
beta (float) – corresponds to flexible exploration on the robustness of RCE
-
forward
(input: torch.Tensor, target: torch.Tensor) → torch.Tensor[source]¶ Calculates loss between
input
andtarget
tensors.- Parameters
input (torch.Tensor) – input tensor of size (batch_size, num_classes)
target (torch.Tensor) – target tensor of size (batch_size), where values of a vector correspond to class index
-
Contrastive¶
-
class
catalyst.contrib.nn.criterion.contrastive.
ContrastiveEmbeddingLoss
(margin=1.0, reduction='mean')[source]¶ Bases:
torch.nn.modules.module.Module
The Contrastive embedding loss.
It has been proposed in Dimensionality Reduction by Learning an Invariant Mapping.
-
__init__
(margin=1.0, reduction='mean')[source]¶ - Parameters
margin – margin parameter
reduction – criterion reduction type
-
forward
(embeddings_left: torch.Tensor, embeddings_right: torch.Tensor, distance_true) → torch.Tensor[source]¶ Forward propagation method for the contrastive loss.
- Parameters
embeddings_left (torch.Tensor) – left objects embeddings
embeddings_right (torch.Tensor) – right objects embeddings
distance_true – true distances
- Returns
loss
- Return type
torch.Tensor
-
-
class
catalyst.contrib.nn.criterion.contrastive.
ContrastiveDistanceLoss
(margin=1.0, reduction='mean')[source]¶ Bases:
torch.nn.modules.module.Module
The Contrastive distance loss.
@TODO: Docs. Contribution is welcome.
-
class
catalyst.contrib.nn.criterion.contrastive.
ContrastivePairwiseEmbeddingLoss
(margin=1.0, reduction='mean')[source]¶ Bases:
torch.nn.modules.module.Module
ContrastivePairwiseEmbeddingLoss – proof of concept criterion.
Still work in progress.
@TODO: Docs. Contribution is welcome.
Circle¶
-
class
catalyst.contrib.nn.criterion.circle.
CircleLoss
(margin: float, gamma: float)[source]¶ Bases:
torch.nn.modules.module.Module
CircleLoss from “Circle Loss: A Unified Perspective of Pair Similarity Optimization” https://arxiv.org/abs/2002.10857
Adapter from: https://github.com/TinyZeaMays/CircleLoss
Example
>>> import torch >>> from torch.nn import functional as F >>> from catalyst.contrib.nn import CircleLoss >>> >>> features = F.normalize(torch.rand(256, 64, requires_grad=True)) >>> labels = torch.randint(high=10, size=(256,)) >>> criterion = CircleLoss(margin=0.25, gamma=256) >>> criterion(features, labels)
Dice¶
-
class
catalyst.contrib.nn.criterion.dice.
BCEDiceLoss
(eps: float = 1e-07, threshold: float = None, activation: str = 'Sigmoid', bce_weight: float = 0.5, dice_weight: float = 0.5)[source]¶ Bases:
torch.nn.modules.module.Module
@TODO: Docs. Contribution is welcome.
-
class
catalyst.contrib.nn.criterion.dice.
DiceLoss
(eps: float = 1e-07, threshold: float = None, activation: str = 'Sigmoid')[source]¶ Bases:
torch.nn.modules.module.Module
@TODO: Docs. Contribution is welcome.
Focal¶
-
class
catalyst.contrib.nn.criterion.focal.
FocalLossBinary
(ignore: int = None, reduced: bool = False, gamma: float = 2.0, alpha: float = 0.25, threshold: float = 0.5, reduction: str = 'mean')[source]¶ Bases:
torch.nn.modules.loss._Loss
Compute focal loss for binary classification problem.
It has been proposed in Focal Loss for Dense Object Detection paper.
@TODO: Docs (add Example). Contribution is welcome.
-
class
catalyst.contrib.nn.criterion.focal.
FocalLossMultiClass
(ignore: int = None, reduced: bool = False, gamma: float = 2.0, alpha: float = 0.25, threshold: float = 0.5, reduction: str = 'mean')[source]¶ Bases:
catalyst.contrib.nn.criterion.focal.FocalLossBinary
Compute focal loss for multi-class problem. Ignores targets having -1 label.
It has been proposed in Focal Loss for Dense Object Detection paper.
@TODO: Docs (add Example). Contribution is welcome.
GAN¶
-
class
catalyst.contrib.nn.criterion.gan.
MeanOutputLoss
[source]¶ Bases:
torch.nn.modules.module.Module
Criterion to compute simple mean of the output, completely ignoring target (maybe useful e.g. for WGAN real/fake validity averaging.
Huber¶
IOU¶
-
class
catalyst.contrib.nn.criterion.iou.
IoULoss
(eps: float = 1e-07, threshold: float = None, activation: str = 'Sigmoid')[source]¶ Bases:
torch.nn.modules.module.Module
The intersection over union (Jaccard) loss.
@TODO: Docs. Contribution is welcome.
-
__init__
(eps: float = 1e-07, threshold: float = None, activation: str = 'Sigmoid')[source]¶ - Parameters
eps (float) – epsilon to avoid zero division
threshold (float) – threshold for outputs binarization
activation (str) – An torch.nn activation applied to the outputs. Must be one of
'none'
,'Sigmoid'
,'Softmax2d'
-
-
class
catalyst.contrib.nn.criterion.iou.
BCEIoULoss
(eps: float = 1e-07, threshold: float = None, activation: str = 'Sigmoid', reduction: str = 'mean')[source]¶ Bases:
torch.nn.modules.module.Module
The Intersection over union (Jaccard) with BCE loss.
@TODO: Docs. Contribution is welcome.
-
__init__
(eps: float = 1e-07, threshold: float = None, activation: str = 'Sigmoid', reduction: str = 'mean')[source]¶ - Parameters
eps (float) – epsilon to avoid zero division
threshold (float) – threshold for outputs binarization
activation (str) – An torch.nn activation applied to the outputs. Must be one of
'none'
,'Sigmoid'
,'Softmax2d'
reduction (str) – Specifies the reduction to apply to the output of BCE
-
Lovasz¶
-
class
catalyst.contrib.nn.criterion.lovasz.
LovaszLossBinary
(per_image=False, ignore=None)[source]¶ Bases:
torch.nn.modules.loss._Loss
Creates a criterion that optimizes a binary Lovasz loss.
It has been proposed in The Lovasz-Softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks.
-
class
catalyst.contrib.nn.criterion.lovasz.
LovaszLossMultiClass
(per_image=False, ignore=None)[source]¶ Bases:
torch.nn.modules.loss._Loss
Creates a criterion that optimizes a multi-class Lovasz loss.
It has been proposed in The Lovasz-Softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks.
-
class
catalyst.contrib.nn.criterion.lovasz.
LovaszLossMultiLabel
(per_image=False, ignore=None)[source]¶ Bases:
torch.nn.modules.loss._Loss
Creates a criterion that optimizes a multi-label Lovasz loss.
It has been proposed in The Lovasz-Softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks.
Margin¶
-
class
catalyst.contrib.nn.criterion.margin.
MarginLoss
(alpha: float = 0.2, beta: float = 1.0, skip_labels: Union[int, List[int]] = -1)[source]¶ Bases:
torch.nn.modules.module.Module
@TODO: Docs. Contribution is welcome.
Triplet¶
-
class
catalyst.contrib.nn.criterion.triplet.
TripletLoss
(margin: float = 0.3)[source]¶ Bases:
torch.nn.modules.module.Module
Triplet loss with hard positive/negative mining.
- Reference:
Code imported from https://github.com/NegatioN/OnlineMiningTripletLoss
-
class
catalyst.contrib.nn.criterion.triplet.
TripletPairwiseEmbeddingLoss
(margin: float = 0.3, reduction: str = 'mean')[source]¶ Bases:
torch.nn.modules.module.Module
TripletPairwiseEmbeddingLoss – proof of concept criterion.
Still work in progress.
@TODO: Docs. Contribution is welcome.
Wing¶
-
class
catalyst.contrib.nn.criterion.wing.
WingLoss
(width: int = 5, curvature: float = 0.5, reduction: str = 'mean')[source]¶ Bases:
torch.nn.modules.module.Module
Creates a criterion that optimizes a Wing loss.
It has been proposed in Wing Loss for Robust Facial Landmark Localisation with Convolutional Neural Networks.
Examples
@TODO: Docs. Contribution is welcome.
Adapted from: https://github.com/BloodAxe/pytorch-toolbelt
Modules¶
Common modules¶
-
class
catalyst.contrib.nn.modules.common.
Flatten
[source]¶ Bases:
torch.nn.modules.module.Module
Flattens the input. Does not affect the batch size.
@TODO: Docs (add Example). Contribution is welcome.
-
class
catalyst.contrib.nn.modules.common.
GaussianNoise
(stddev: float = 0.1)[source]¶ Bases:
torch.nn.modules.module.Module
A gaussian noise module.
Shape:
Input: (batch, *)
Output: (batch, *) (same shape as input)
-
class
catalyst.contrib.nn.modules.common.
Lambda
(lambda_fn)[source]¶ Bases:
torch.nn.modules.module.Module
@TODO: Docs. Contribution is welcome.
-
class
catalyst.contrib.nn.modules.common.
Normalize
(**normalize_kwargs)[source]¶ Bases:
torch.nn.modules.module.Module
Performs \(L_p\) normalization of inputs over specified dimension.
@TODO: Docs (add Example). Contribution is welcome.
Last-Mean-Average-Attention (LAMA)-Pooling¶
-
class
catalyst.contrib.nn.modules.lama.
TemporalLastPooling
[source]¶ Bases:
torch.nn.modules.module.Module
@TODO: Docs. Contribution is welcome.
-
class
catalyst.contrib.nn.modules.lama.
TemporalAvgPooling
[source]¶ Bases:
torch.nn.modules.module.Module
@TODO: Docs. Contribution is welcome.
-
class
catalyst.contrib.nn.modules.lama.
TemporalMaxPooling
[source]¶ Bases:
torch.nn.modules.module.Module
@TODO: Docs. Contribution is welcome.
-
class
catalyst.contrib.nn.modules.lama.
TemporalDropLastWrapper
(net)[source]¶ Bases:
torch.nn.modules.module.Module
@TODO: Docs. Contribution is welcome.
-
class
catalyst.contrib.nn.modules.lama.
TemporalAttentionPooling
(in_features, activation=None, kernel_size=1, **params)[source]¶ Bases:
torch.nn.modules.module.Module
@TODO: Docs. Contribution is welcome.
-
__init__
(in_features, activation=None, kernel_size=1, **params)[source]¶ @TODO: Docs. Contribution is welcome.
-
forward
(x: torch.Tensor, mask: torch.Tensor = None) → torch.Tensor[source]¶ - Parameters
x (torch.Tensor) – tensor of size (batch_size, history_len, feature_size)
@TODO: Docs. Contribution is welcome.
-
name2activation
= {'sigmoid': Sigmoid(), 'softmax': Softmax(dim=1), 'tanh': Tanh()}¶
-
-
class
catalyst.contrib.nn.modules.lama.
TemporalConcatPooling
(in_features, history_len=1)[source]¶ Bases:
torch.nn.modules.module.Module
@TODO: Docs. Contribution is welcome.
-
class
catalyst.contrib.nn.modules.lama.
LamaPooling
(in_features, groups=None)[source]¶ Bases:
torch.nn.modules.module.Module
@TODO: Docs. Contribution is welcome.
-
available_groups
= ['last', 'avg', 'avg_droplast', 'max', 'max_droplast', 'sigmoid', 'sigmoid_droplast', 'softmax', 'softmax_droplast', 'tanh', 'tanh_droplast']¶
-
Pooling¶
-
class
catalyst.contrib.nn.modules.pooling.
GlobalAttnPool2d
(in_features, activation_fn='Sigmoid')[source]¶ Bases:
torch.nn.modules.module.Module
@TODO: Docs. Contribution is welcome.
-
class
catalyst.contrib.nn.modules.pooling.
GlobalAvgAttnPool2d
(in_features, activation_fn='Sigmoid')[source]¶ Bases:
torch.nn.modules.module.Module
@TODO: Docs (add Example). Contribution is welcome.
-
class
catalyst.contrib.nn.modules.pooling.
GlobalAvgPool2d
[source]¶ Bases:
torch.nn.modules.module.Module
Applies a 2D global average pooling operation over an input signal composed of several input planes.
@TODO: Docs (add Example). Contribution is welcome.
-
class
catalyst.contrib.nn.modules.pooling.
GlobalConcatAttnPool2d
(in_features, activation_fn='Sigmoid')[source]¶ Bases:
torch.nn.modules.module.Module
@TODO: Docs (add Example). Contribution is welcome.
-
class
catalyst.contrib.nn.modules.pooling.
GlobalConcatPool2d
[source]¶ Bases:
torch.nn.modules.module.Module
@TODO: Docs (add Example). Contribution is welcome.
-
class
catalyst.contrib.nn.modules.pooling.
GlobalMaxAttnPool2d
(in_features, activation_fn='Sigmoid')[source]¶ Bases:
torch.nn.modules.module.Module
@TODO: Docs (add Example). Contribution is welcome.
RMSNorm¶
-
class
catalyst.contrib.nn.modules.rms_norm.
RMSNorm
(dimension: int, epsilon: float = 1e-08, is_bias: bool = False)[source]¶ Bases:
torch.nn.modules.module.Module
An implementation of RMS Normalization.
@TODO: Docs (link to paper). Contribution is welcome.
-
__init__
(dimension: int, epsilon: float = 1e-08, is_bias: bool = False)[source]¶ - Parameters
dimension (int) – the dimension of the layer output to normalize
epsilon (float) – an epsilon to prevent dividing by zero in case the layer has zero variance. (default = 1e-8)
is_bias (bool) – a boolean value whether to include bias term while normalization
-
SqueezeAndExcitation¶
-
class
catalyst.contrib.nn.modules.se.
ChannelSqueezeAndSpatialExcitation
(in_channels: int)[source]¶ Bases:
torch.nn.modules.module.Module
The sSE (Channel Squeeze and Spatial Excitation) block from the [Concurrent Spatial and Channel ‘Squeeze & Excitation’ in Fully Convolutional Networks](https://arxiv.org/abs/1803.02579) paper.
Adapted from https://www.kaggle.com/c/tgs-salt-identification-challenge/discussion/66178
Shape:
Input: (batch, channels, height, width)
Output: (batch, channels, height, width) (same shape as input)
-
class
catalyst.contrib.nn.modules.se.
ConcurrentSpatialAndChannelSqueezeAndChannelExcitation
(in_channels: int, r: int = 16)[source]¶ Bases:
torch.nn.modules.module.Module
The scSE (Concurrent Spatial and Channel Squeeze and Channel Excitation) block from the [Concurrent Spatial and Channel ‘Squeeze & Excitation’ in Fully Convolutional Networks](https://arxiv.org/abs/1803.02579) paper.
Adapted from https://www.kaggle.com/c/tgs-salt-identification-challenge/discussion/66178
Shape:
Input: (batch, channels, height, width)
Output: (batch, channels, height, width) (same shape as input)
-
class
catalyst.contrib.nn.modules.se.
SqueezeAndExcitation
(in_channels: int, r: int = 16)[source]¶ Bases:
torch.nn.modules.module.Module
The channel-wise SE (Squeeze and Excitation) block from the [Squeeze-and-Excitation Networks](https://arxiv.org/abs/1709.01507) paper.
Adapted from https://www.kaggle.com/c/tgs-salt-identification-challenge/discussion/65939 and https://www.kaggle.com/c/tgs-salt-identification-challenge/discussion/66178
Shape:
Input: (batch, channels, height, width)
Output: (batch, channels, height, width) (same shape as input)
Optimizers¶
Lamb¶
-
class
catalyst.contrib.nn.optimizers.lamb.
Lamb
(params, lr: Optional[float] = 0.001, betas: Optional[Tuple[float, float]] = (0.9, 0.999), eps: Optional[float] = 1e-06, weight_decay: Optional[float] = 0.0, adam: Optional[bool] = False)[source]¶ Bases:
torch.optim.optimizer.Optimizer
Implements Lamb algorithm.
It has been proposed in Training BERT in 76 minutes.
-
__init__
(params, lr: Optional[float] = 0.001, betas: Optional[Tuple[float, float]] = (0.9, 0.999), eps: Optional[float] = 1e-06, weight_decay: Optional[float] = 0.0, adam: Optional[bool] = False)[source]¶ - Parameters
params (iterable) – iterable of parameters to optimize or dicts defining parameter groups
lr (float, optional) – learning rate (default: 1e-3)
betas (Tuple[float, float], optional) – coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999))
eps (float, optional) – term added to the denominator to improve numerical stability (default: 1e-8)
weight_decay (float, optional) – weight decay (L2 penalty) (default: 0)
adam (bool, optional) – always use trust ratio = 1, which turns this into Adam. Useful for comparison purposes.
-
Lookahead¶
-
class
catalyst.contrib.nn.optimizers.lookahead.
Lookahead
(optimizer: torch.optim.optimizer.Optimizer, k: int = 5, alpha: float = 0.5)[source]¶ Bases:
torch.optim.optimizer.Optimizer
Implements Lookahead algorithm.
It has been proposed in Lookahead Optimizer: k steps forward, 1 step back.
Adapted from: https://github.com/alphadl/lookahead.pytorch (MIT License)
-
__init__
(optimizer: torch.optim.optimizer.Optimizer, k: int = 5, alpha: float = 0.5)[source]¶ @TODO: Docs. Contribution is welcome.
-
classmethod
get_from_params
(params: Dict, base_optimizer_params: Dict = None, **kwargs) → catalyst.contrib.nn.optimizers.lookahead.Lookahead[source]¶ @TODO: Docs. Contribution is welcome.
-
QHAdamW¶
-
class
catalyst.contrib.nn.optimizers.qhadamw.
QHAdamW
(params, lr=0.001, betas=(0.995, 0.999), nus=(0.7, 1.0), weight_decay=0.0, eps=1e-08)[source]¶ Bases:
torch.optim.optimizer.Optimizer
Implements QHAdam algorithm.
Combines QHAdam algorithm that was proposed in Quasi-hyperbolic momentum and Adam for deep learning with weight decay decoupling from Decoupled Weight Decay Regularization paper.
Example
>>> optimizer = QHAdamW( ... model.parameters(), ... lr=3e-4, nus=(0.8, 1.0), betas=(0.99, 0.999)) >>> optimizer.zero_grad() >>> loss_fn(model(input), target).backward() >>> optimizer.step()
Adapted from: https://github.com/iprally/qhadamw-pytorch/blob/master/qhadamw.py (MIT License)
-
__init__
(params, lr=0.001, betas=(0.995, 0.999), nus=(0.7, 1.0), weight_decay=0.0, eps=1e-08)[source]¶ - Parameters
params (iterable) – iterable of parameters to optimize or dicts defining parameter groups
lr (float, optional) – learning rate (\(\alpha\) from the paper) (default: 1e-3)
betas (Tuple[float, float], optional) – coefficients used for computing running averages of the gradient and its square (default: (0.995, 0.999))
nus (Tuple[float, float], optional) – immediate discount factors used to estimate the gradient and its square (default: (0.7, 1.0))
eps (float, optional) – term added to the denominator to improve numerical stability (default: 1e-8)
weight_decay (float, optional) – weight decay (L2 regularization coefficient, times two) (default: 0.0)
-
RAdam¶
-
class
catalyst.contrib.nn.optimizers.radam.
RAdam
(params, lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0)[source]¶ Bases:
torch.optim.optimizer.Optimizer
Implements RAdam algorithm.
It has been proposed in On the Variance of the Adaptive Learning Rate and Beyond.
@TODO: Docs (add Example). Contribution is welcome
Adapted from: https://github.com/LiyuanLucasLiu/RAdam (Apache-2.0 License)
Ralamb¶
-
class
catalyst.contrib.nn.optimizers.ralamb.
Ralamb
(params: Iterable, lr: float = 0.001, betas: Tuple[float, float] = (0.9, 0.999), eps: float = 1e-08, weight_decay: float = 0)[source]¶ Bases:
torch.optim.optimizer.Optimizer
RAdam optimizer with LARS/LAMB tricks.
Adapted from: https://github.com/mgrankin/over9000/blob/master/ralamb.py (Apache-2.0 License)
-
__init__
(params: Iterable, lr: float = 0.001, betas: Tuple[float, float] = (0.9, 0.999), eps: float = 1e-08, weight_decay: float = 0)[source]¶ - Parameters
params (iterable) – iterable of parameters to optimize or dicts defining parameter groups
lr (float, optional) – learning rate (default: 1e-3)
betas (Tuple[float, float], optional) – coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999))
eps (float, optional) – term added to the denominator to improve numerical stability (default: 1e-8)
weight_decay (float, optional) – weight decay (L2 penalty) (default: 0)
-
Schedulers¶
-
class
catalyst.contrib.nn.schedulers.base.
BaseScheduler
(optimizer, last_epoch=-1)[source]¶ Bases:
torch.optim.lr_scheduler._LRScheduler
,abc.ABC
Base class for all schedulers with momentum update.
-
class
catalyst.contrib.nn.schedulers.base.
BatchScheduler
(optimizer, last_epoch=-1)[source]¶ Bases:
catalyst.contrib.nn.schedulers.base.BaseScheduler
,abc.ABC
@TODO: Docs. Contribution is welcome.
OneCycleLRWithWarmup¶
-
class
catalyst.contrib.nn.schedulers.onecycle.
OneCycleLRWithWarmup
(optimizer: torch.optim.optimizer.Optimizer, num_steps: int, lr_range=(1.0, 0.005), init_lr: float = None, warmup_steps: int = 0, warmup_fraction: float = None, decay_steps: int = 0, decay_fraction: float = None, momentum_range=(0.8, 0.99, 0.999), init_momentum: float = None)[source]¶ Bases:
catalyst.contrib.nn.schedulers.base.BatchScheduler
OneCycle scheduler with warm-up & lr decay stages.
First stage increases lr from
init_lr
tomax_lr
, and calledwarmup
. Also it decreases momentum frominit_momentum
tomin_momentum
. Takeswarmup_steps
stepsSecond is
annealing
stage. Decrease lr frommax_lr
tomin_lr
, Increase momentum frommin_momentum
tomax_momentum
.Third, optional, lr decay.
-
__init__
(optimizer: torch.optim.optimizer.Optimizer, num_steps: int, lr_range=(1.0, 0.005), init_lr: float = None, warmup_steps: int = 0, warmup_fraction: float = None, decay_steps: int = 0, decay_fraction: float = None, momentum_range=(0.8, 0.99, 0.999), init_momentum: float = None)[source]¶ - Parameters
optimizer – PyTorch optimizer
num_steps (int) – total number of steps
lr_range – tuple with two or three elements (max_lr, min_lr, [final_lr])
init_lr (float, optional) – initial lr
warmup_steps (int) – count of steps for warm-up stage
warmup_fraction (float, optional) – fraction in [0; 1) to calculate number of warmup steps. Cannot be set together with
warmup_steps
decay_steps (int) – count of steps for lr decay stage
decay_fraction (float, optional) – fraction in [0; 1) to calculate number of decay steps. Cannot be set together with
decay_steps
momentum_range – tuple with two or three elements (min_momentum, max_momentum, [final_momentum])
init_momentum (float, optional) – initial momentum
-
get_lr
() → List[float][source]¶ Function that returns the new lr for optimizer.
- Returns
calculated lr for every param groups
- Return type
List[float]
-
get_momentum
() → List[float][source]¶ Function that returns the new momentum for optimizer.
- Returns
calculated momentum for every param groups
- Return type
List[float]
-
Models¶
Segmentation¶
Unet¶
-
class
catalyst.contrib.models.cv.segmentation.unet.
ResnetUnet
(num_classes: int = 1, arch: str = 'resnet18', pretrained: bool = True, encoder_params: Dict = None, bridge_params: Dict = None, decoder_params: Dict = None, head_params: Dict = None, state_dict: Union[dict, str, pathlib.Path] = None)[source]¶ Bases:
catalyst.contrib.models.cv.segmentation.core.ResnetUnetSpec
@TODO: Docs. Contribution is welcome.
-
class
catalyst.contrib.models.cv.segmentation.unet.
Unet
(num_classes: int = 1, in_channels: int = 3, num_channels: int = 32, num_blocks: int = 4, encoder_params: Dict = None, bridge_params: Dict = None, decoder_params: Dict = None, head_params: Dict = None, state_dict: Union[dict, str, pathlib.Path] = None)[source]¶ Bases:
catalyst.contrib.models.cv.segmentation.core.UnetSpec
@TODO: Docs. Contribution is welcome.
Linknet¶
-
class
catalyst.contrib.models.cv.segmentation.linknet.
Linknet
(num_classes: int = 1, in_channels: int = 3, num_channels: int = 32, num_blocks: int = 4, encoder_params: Dict = None, bridge_params: Dict = None, decoder_params: Dict = None, head_params: Dict = None, state_dict: Union[dict, str, pathlib.Path] = None)[source]¶ Bases:
catalyst.contrib.models.cv.segmentation.core.UnetSpec
@TODO: Docs. Contribution is welcome.
-
class
catalyst.contrib.models.cv.segmentation.linknet.
ResnetLinknet
(num_classes: int = 1, arch: str = 'resnet18', pretrained: bool = True, encoder_params: Dict = None, bridge_params: Dict = None, decoder_params: Dict = None, head_params: Dict = None, state_dict: Union[dict, str, pathlib.Path] = None)[source]¶ Bases:
catalyst.contrib.models.cv.segmentation.core.ResnetUnetSpec
@TODO: Docs. Contribution is welcome.
FPNnet¶
-
class
catalyst.contrib.models.cv.segmentation.fpn.
FPNUnet
(num_classes: int = 1, in_channels: int = 3, num_channels: int = 32, num_blocks: int = 4, encoder_params: Dict = None, bridge_params: Dict = None, decoder_params: Dict = None, head_params: Dict = None, state_dict: Union[dict, str, pathlib.Path] = None)[source]¶ Bases:
catalyst.contrib.models.cv.segmentation.core.UnetSpec
@TODO: Docs. Contribution is welcome.
-
class
catalyst.contrib.models.cv.segmentation.fpn.
ResnetFPNUnet
(num_classes: int = 1, arch: str = 'resnet18', pretrained: bool = True, encoder_params: Dict = None, bridge_params: Dict = None, decoder_params: Dict = None, head_params: Dict = None, state_dict: Union[dict, str, pathlib.Path] = None)[source]¶ Bases:
catalyst.contrib.models.cv.segmentation.core.ResnetUnetSpec
@TODO: Docs. Contribution is welcome.
PSPnet¶
-
class
catalyst.contrib.models.cv.segmentation.psp.
PSPnet
(num_classes: int = 1, in_channels: int = 3, num_channels: int = 32, num_blocks: int = 4, encoder_params: Dict = None, bridge_params: Dict = None, decoder_params: Dict = None, head_params: Dict = None, state_dict: Union[dict, str, pathlib.Path] = None)[source]¶ Bases:
catalyst.contrib.models.cv.segmentation.core.UnetSpec
@TODO: Docs. Contribution is welcome.
-
class
catalyst.contrib.models.cv.segmentation.psp.
ResnetPSPnet
(num_classes: int = 1, arch: str = 'resnet18', pretrained: bool = True, encoder_params: Dict = None, bridge_params: Dict = None, decoder_params: Dict = None, head_params: Dict = None, state_dict: Union[dict, str, pathlib.Path] = None)[source]¶ Bases:
catalyst.contrib.models.cv.segmentation.core.ResnetUnetSpec
@TODO: Docs. Contribution is welcome.
Registry¶
catalyst subpackage registries
-
catalyst.contrib.registry.
Criterion
(factory: Union[Type, Callable[[...], Any]] = None, *factories: Union[Type, Callable[[...], Any]], name: str = None, **named_factories: Union[Type, Callable[[...], Any]]) → Union[Type, Callable[[...], Any]]¶ Adds factory to registry with it’s
__name__
attribute or provided name. Signature is flexible.- Parameters
factory – Factory instance
factories – More instances
name – Provided name for first instance. Use only when pass single instance.
named_factories – Factory and their names as kwargs
- Returns
First factory passed
- Return type
(Factory)
-
catalyst.contrib.registry.
Optimizer
(factory: Union[Type, Callable[[...], Any]] = None, *factories: Union[Type, Callable[[...], Any]], name: str = None, **named_factories: Union[Type, Callable[[...], Any]]) → Union[Type, Callable[[...], Any]]¶ Adds factory to registry with it’s
__name__
attribute or provided name. Signature is flexible.- Parameters
factory – Factory instance
factories – More instances
name – Provided name for first instance. Use only when pass single instance.
named_factories – Factory and their names as kwargs
- Returns
First factory passed
- Return type
(Factory)
-
catalyst.contrib.registry.
Scheduler
(factory: Union[Type, Callable[[...], Any]] = None, *factories: Union[Type, Callable[[...], Any]], name: str = None, **named_factories: Union[Type, Callable[[...], Any]]) → Union[Type, Callable[[...], Any]]¶ Adds factory to registry with it’s
__name__
attribute or provided name. Signature is flexible.- Parameters
factory – Factory instance
factories – More instances
name – Provided name for first instance. Use only when pass single instance.
named_factories – Factory and their names as kwargs
- Returns
First factory passed
- Return type
(Factory)
-
catalyst.contrib.registry.
Module
(factory: Union[Type, Callable[[...], Any]] = None, *factories: Union[Type, Callable[[...], Any]], name: str = None, **named_factories: Union[Type, Callable[[...], Any]]) → Union[Type, Callable[[...], Any]]¶ Adds factory to registry with it’s
__name__
attribute or provided name. Signature is flexible.- Parameters
factory – Factory instance
factories – More instances
name – Provided name for first instance. Use only when pass single instance.
named_factories – Factory and their names as kwargs
- Returns
First factory passed
- Return type
(Factory)
-
catalyst.contrib.registry.
Model
(factory: Union[Type, Callable[[...], Any]] = None, *factories: Union[Type, Callable[[...], Any]], name: str = None, **named_factories: Union[Type, Callable[[...], Any]]) → Union[Type, Callable[[...], Any]]¶ Adds factory to registry with it’s
__name__
attribute or provided name. Signature is flexible.- Parameters
factory – Factory instance
factories – More instances
name – Provided name for first instance. Use only when pass single instance.
named_factories – Factory and their names as kwargs
- Returns
First factory passed
- Return type
(Factory)
-
catalyst.contrib.registry.
Sampler
(factory: Union[Type, Callable[[...], Any]] = None, *factories: Union[Type, Callable[[...], Any]], name: str = None, **named_factories: Union[Type, Callable[[...], Any]]) → Union[Type, Callable[[...], Any]]¶ Adds factory to registry with it’s
__name__
attribute or provided name. Signature is flexible.- Parameters
factory – Factory instance
factories – More instances
name – Provided name for first instance. Use only when pass single instance.
named_factories – Factory and their names as kwargs
- Returns
First factory passed
- Return type
(Factory)
-
catalyst.contrib.registry.
Transform
(factory: Union[Type, Callable[[...], Any]] = None, *factories: Union[Type, Callable[[...], Any]], name: str = None, **named_factories: Union[Type, Callable[[...], Any]]) → Union[Type, Callable[[...], Any]]¶ Adds factory to registry with it’s
__name__
attribute or provided name. Signature is flexible.- Parameters
factory – Factory instance
factories – More instances
name – Provided name for first instance. Use only when pass single instance.
named_factories – Factory and their names as kwargs
- Returns
First factory passed
- Return type
(Factory)
-
catalyst.contrib.registry.
Experiment
(factory: Union[Type, Callable[[...], Any]] = None, *factories: Union[Type, Callable[[...], Any]], name: str = None, **named_factories: Union[Type, Callable[[...], Any]]) → Union[Type, Callable[[...], Any]]¶ Adds factory to registry with it’s
__name__
attribute or provided name. Signature is flexible.- Parameters
factory – Factory instance
factories – More instances
name – Provided name for first instance. Use only when pass single instance.
named_factories – Factory and their names as kwargs
- Returns
First factory passed
- Return type
(Factory)
Tools¶
Tensorboard¶
- Tensorboard readers:
-
exception
catalyst.contrib.tools.tensorboard.
EventReadingException
[source]¶ Bases:
Exception
An exception that correspond to an event file reading error.
-
class
catalyst.contrib.tools.tensorboard.
EventsFileReader
(events_file: BinaryIO)[source]¶ Bases:
collections.abc.Iterable
An iterator over a Tensorboard events file.
-
class
catalyst.contrib.tools.tensorboard.
SummaryItem
(tag, step, wall_time, value, type)¶ Bases:
tuple
-
property
step
¶ Alias for field number 1
-
property
tag
¶ Alias for field number 0
-
property
type
¶ Alias for field number 4
-
property
value
¶ Alias for field number 3
-
property
wall_time
¶ Alias for field number 2
-
property
-
class
catalyst.contrib.tools.tensorboard.
SummaryReader
(logdir: Union[str, pathlib.Path], tag_filter: Optional[collections.abc.Iterable] = None, types: collections.abc.Iterable = ('scalar',))[source]¶ Bases:
collections.abc.Iterable
Iterates over events in all the files in the current logdir.
Note
Only scalars are supported at the moment.
-
__init__
(logdir: Union[str, pathlib.Path], tag_filter: Optional[collections.abc.Iterable] = None, types: collections.abc.Iterable = ('scalar',))[source]¶ Initalize new summary reader.
- Parameters
logdir – A directory with Tensorboard summary data
tag_filter – A list of tags to leave (None for all)
types – A list of types to get.
"scalar" and "image" types are allowed at the moment. (Only) –
-
Utilities¶
Argparse¶
-
catalyst.contrib.utils.argparse.
boolean_flag
(parser: argparse.ArgumentParser, name: str, default: Optional[bool] = False, help: str = None, shorthand: str = None) → None[source]¶ Add a boolean flag to a parser inplace.
Examples
>>> parser = argparse.ArgumentParser() >>> boolean_flag( >>> parser, "flag", default=False, help="some flag", shorthand="f" >>> )
- Parameters
parser (argparse.ArgumentParser) – parser to add the flag to
name (str) – argument name –<name> will enable the flag, while –no-<name> will disable it
default (bool, optional) – default value of the flag
help (str) – help string for the flag
shorthand (str) – shorthand string for the argument
Compression¶
-
catalyst.contrib.utils.compression.
pack
(data)¶ Serialize the data into bytes using pickle.
- Parameters
data – a value
- Returns
Returns a bytes object serialized with pickle data.
-
catalyst.contrib.utils.compression.
pack_if_needed
(data)¶ Serialize the data into bytes using pickle.
- Parameters
data – a value
- Returns
Returns a bytes object serialized with pickle data.
-
catalyst.contrib.utils.compression.
unpack
(data)¶ Deserialize bytes into an object using pickle.
- Parameters
bytes – a bytes object containing serialized with pickle data.
- Returns
Returns a value deserialized from the bytes-like object.
-
catalyst.contrib.utils.compression.
unpack_if_needed
(data)¶ Deserialize bytes into an object using pickle.
- Parameters
bytes – a bytes object containing serialized with pickle data.
- Returns
Returns a value deserialized from the bytes-like object.
Confusion Matrix¶
-
catalyst.contrib.utils.confusion_matrix.
calculate_tp_fp_fn
(confusion_matrix: numpy.ndarray) → numpy.ndarray[source]¶ @TODO: Docs. Contribution is welcome.
-
catalyst.contrib.utils.confusion_matrix.
calculate_confusion_matrix_from_arrays
(ground_truth: numpy.ndarray, prediction: numpy.ndarray, num_classes: int) → numpy.ndarray[source]¶ Calculate confusion matrix for a given set of classes. If GT value is outside of the [0, num_classes) it is excluded.
- Parameters
ground_truth (np.ndarray) –
prediction (np.ndarray) –
num_classes (int) –
@TODO: Docs . Contribution is welcome
Dataset¶
-
catalyst.contrib.utils.dataset.
create_dataset
(dirs: str, extension: str = None, process_fn: Callable[[str], object] = None, recursive: bool = False) → Dict[str, object][source]¶ Create dataset (dict like {key: [values]}) from vctk-like dataset:
dataset/ cat/ *.ext dog/ *.ext
- Parameters
dirs (str) – path to dirs, for example /home/user/data/**
extension (str) – data extension you are looking for
process_fn (Callable[[str], object]) – function(path_to_file) -> object process function for found files, by default
recursive (bool) – enables recursive globbing
- Returns
dataset
- Return type
dict
-
catalyst.contrib.utils.dataset.
create_dataframe
(dataset: Dict[str, object], **dataframe_args) → pandas.core.frame.DataFrame[source]¶ Create pd.DataFrame from dict like {key: [values]}.
- Parameters
dataset – dict like {key: [values]}
**dataframe_args –
- indexIndex or array-like
Index to use for resulting frame. Will default to np.arange(n) if no indexing information part of input data and no index provided
- columnsIndex or array-like
Column labels to use for resulting frame. Will default to np.arange(n) if no column labels are provided
- dtypedtype, default None
Data type to force, otherwise infer
- Returns
dataframe from giving dataset
- Return type
pd.DataFrame
-
catalyst.contrib.utils.dataset.
split_dataset_train_test
(dataset: pandas.core.frame.DataFrame, **train_test_split_args) → Tuple[Dict[str, object], Dict[str, object]][source]¶ Split dataset in train and test parts.
- Parameters
dataset – dict like dataset
**train_test_split_args –
- test_sizefloat, int, or None (default is None)
If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the test split. If int, represents the absolute number of test samples. If None, the value is automatically set to the complement of the train size. If train size is also None, test size is set to 0.25.
- train_sizefloat, int, or None (default is None)
If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the train split. If int, represents the absolute number of train samples. If None, the value is automatically set to the complement of the test size.
- random_stateint or RandomState
Pseudo-random number generator state used for random sampling.
- stratifyarray-like or None (default is None)
If not None, data is split in a stratified fashion, using this as the class labels.
- Returns
train and test dicts
Misc¶
-
catalyst.contrib.utils.misc.
args_are_not_none
(*args: Optional[Any]) → bool[source]¶ Check that all arguments are not
None
.- Parameters
*args (Any) – values
- Returns
True if all value were not None, False otherwise
- Return type
bool
-
catalyst.contrib.utils.misc.
make_tuple
(tuple_like)[source]¶ Creates a tuple if given
tuple_like
value isn’t list or tuple.- Returns
tuple or list
Pandas¶
-
catalyst.contrib.utils.pandas.
dataframe_to_list
(dataframe: pandas.core.frame.DataFrame) → List[dict][source]¶ Converts dataframe to a list of rows (without indexes).
- Parameters
dataframe (DataFrame) – input dataframe
- Returns
list of rows
- Return type
(List[dict])
-
catalyst.contrib.utils.pandas.
folds_to_list
(folds: Union[list, str, pandas.core.series.Series]) → List[int][source]¶ This function formats string or either list of numbers into a list of unique int.
Examples
>>> folds_to_list("1,2,1,3,4,2,4,6") [1, 2, 3, 4, 6] >>> folds_to_list([1, 2, 3.0, 5]) [1, 2, 3, 5]
- Parameters
folds (Union[list, str, pd.Series]) – Either list of numbers or one string with numbers separated by commas or pandas series
- Returns
list of unique ints
- Return type
List[int]
- Raises
ValueError – if value in string or array cannot be casted to int
-
catalyst.contrib.utils.pandas.
split_dataframe
(dataframe: pandas.core.frame.DataFrame, train_folds: List[int], valid_folds: Optional[List[int]] = None, infer_folds: Optional[List[int]] = None, tag2class: Optional[Dict[str, int]] = None, tag_column: str = None, class_column: str = None, seed: int = 42, n_folds: int = 5) → Tuple[pandas.core.frame.DataFrame, pandas.core.frame.DataFrame, pandas.core.frame.DataFrame, pandas.core.frame.DataFrame][source]¶ Split a Pandas DataFrame into folds.
- Parameters
dataframe (pd.DataFrame) – input dataframe
train_folds (List[int]) – train folds
valid_folds (List[int], optional) – valid folds. If none takes all folds not included in
train_folds
infer_folds (List[int], optional) – infer folds. If none takes all folds not included in
train_folds
andvalid_folds
tag2class (Dict[str, int], optional) – mapping from label names into int
tag_column (str, optional) – column with label names
class_column (str, optional) – column to use for split
seed (int) – seed for split
n_folds (int) – number of folds
- Returns
- tuple with 4 dataframes
whole dataframe, train part, valid part and infer part
- Return type
(tuple)
-
catalyst.contrib.utils.pandas.
split_dataframe_on_column_folds
(dataframe: pandas.core.frame.DataFrame, column: str, random_state: int = 42, n_folds: int = 5) → pandas.core.frame.DataFrame[source]¶ Splits DataFrame into N folds.
- Parameters
dataframe – a dataset
column – which column to use
random_state – seed for random shuffle
n_folds – number of result folds
- Returns
new dataframe with fold column
- Return type
pd.DataFrame
-
catalyst.contrib.utils.pandas.
split_dataframe_on_folds
(dataframe: pandas.core.frame.DataFrame, random_state: int = 42, n_folds: int = 5) → pandas.core.frame.DataFrame[source]¶ Splits DataFrame into N folds.
- Parameters
dataframe – a dataset
random_state – seed for random shuffle
n_folds – number of result folds
- Returns
new dataframe with fold column
- Return type
pd.DataFrame
-
catalyst.contrib.utils.pandas.
split_dataframe_on_stratified_folds
(dataframe: pandas.core.frame.DataFrame, class_column: str, random_state: int = 42, n_folds: int = 5) → pandas.core.frame.DataFrame[source]¶ Splits DataFrame into N stratified folds.
Also see
catalyst.data.sampler.BalanceClassSampler
- Parameters
dataframe – a dataset
class_column – which column to use for split
random_state – seed for random shuffle
n_folds – number of result folds
- Returns
new dataframe with fold column
- Return type
pd.DataFrame
-
catalyst.contrib.utils.pandas.
split_dataframe_train_test
(dataframe: pandas.core.frame.DataFrame, **train_test_split_args) → Tuple[pandas.core.frame.DataFrame, pandas.core.frame.DataFrame][source]¶ Split dataframe in train and test part.
- Parameters
dataframe – pd.DataFrame to split
**train_test_split_args –
- test_sizefloat, int, or None (default is None)
If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the test split. If int, represents the absolute number of test samples. If None, the value is automatically set to the complement of the train size. If train size is also None, test size is set to 0.25.
- train_sizefloat, int, or None (default is None)
If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the train split. If int, represents the absolute number of train samples. If None, the value is automatically set to the complement of the test size.
- random_stateint or RandomState
Pseudo-random number generator state used for random sampling.
- stratifyarray-like or None (default is None)
If not None, data is split in a stratified fashion, using this as the class labels.
- Returns
train and test DataFrames
Note
It exist cause sklearn split is overcomplicated.
Separates values in
class_column
column.- Parameters
dataframe – a dataset
tag_column – column name to separate values
tag_delim – delimiter to separate values
- Returns
new dataframe
- Return type
pd.DataFrame
-
catalyst.contrib.utils.pandas.
read_multiple_dataframes
(in_csv_train: str = None, in_csv_valid: str = None, in_csv_infer: str = None, tag2class: Optional[Dict[str, int]] = None, class_column: str = None, tag_column: str = None) → Tuple[pandas.core.frame.DataFrame, pandas.core.frame.DataFrame, pandas.core.frame.DataFrame, pandas.core.frame.DataFrame][source]¶ This function reads train/valid/infer dataframes from giving paths.
- Parameters
in_csv_train (str) – paths to train csv separated by commas
in_csv_valid (str) – paths to valid csv separated by commas
in_csv_infer (str) – paths to infer csv separated by commas
tag2class (Dict[str, int], optional) – mapping from label names into int
tag_column (str, optional) – column with label names
class_column (str, optional) – column to use for split
- Returns
- tuple with 4 dataframes
whole dataframe, train part, valid part and infer part
- Return type
(tuple)
-
catalyst.contrib.utils.pandas.
map_dataframe
(dataframe: pandas.core.frame.DataFrame, tag_column: str, class_column: str, tag2class: Dict[str, int], verbose: bool = False) → pandas.core.frame.DataFrame[source]¶ This function maps tags from
tag_column
to ints intoclass_column
usingtag2class
dictionary.- Parameters
dataframe (pd.DataFrame) – input dataframe
tag_column (str) – column with tags
class_column (str) –
tag2class (Dict[str, int]) – mapping from tags to class labels
verbose – flag if true, uses tqdm
- Returns
updated dataframe with
class_column
- Return type
pd.DataFrame
-
catalyst.contrib.utils.pandas.
get_dataset_labeling
(dataframe: pandas.core.frame.DataFrame, tag_column: str) → Dict[str, int][source]¶ Prepares a mapping using unique values from
tag_column
.{ "class_name_0": 0, "class_name_1": 1, ... "class_name_N": N }
- Parameters
dataframe – a dataset
tag_column – which column to use
- Returns
mapping from tag to labels
- Return type
Dict[str, int]
-
catalyst.contrib.utils.pandas.
merge_multiple_fold_csv
(fold_name: str, paths: Optional[str]) → pandas.core.frame.DataFrame[source]¶ Reads csv into one DataFrame with column
fold
.- Parameters
fold_name (str) – current fold name
paths (str) – paths to csv separated by commas
- Returns
merged dataframes with column
fold
==fold_name
- Return type
pd.DataFrame
-
catalyst.contrib.utils.pandas.
read_csv_data
(in_csv: str = None, train_folds: Optional[List[int]] = None, valid_folds: Optional[List[int]] = None, infer_folds: Optional[List[int]] = None, seed: int = 42, n_folds: int = 5, in_csv_train: str = None, in_csv_valid: str = None, in_csv_infer: str = None, tag2class: Optional[Dict[str, int]] = None, class_column: str = None, tag_column: str = None) → Tuple[pandas.core.frame.DataFrame, List[dict], List[dict], List[dict]][source]¶ From giving path
in_csv
reads a dataframe and split it to train/valid/infer folds or from several pathsin_csv_train
,in_csv_valid
,in_csv_infer
reads independent folds.Note
- This function can be used with different combinations of params.
- First block is used to get dataset from one csv:
in_csv, train_folds, valid_folds, infer_folds, seed, n_folds
- Second includes paths to different csv for train/valid and infer parts:
in_csv_train, in_csv_valid, in_csv_infer
- The other params (tag2class, tag_column, class_column) are optional
for any previous block
- Parameters
in_csv (str) – paths to whole dataset
train_folds (List[int]) – train folds
valid_folds (List[int], optional) – valid folds. If none takes all folds not included in
train_folds
infer_folds (List[int], optional) – infer folds. If none takes all folds not included in
train_folds
andvalid_folds
seed (int) – seed for split
n_folds (int) – number of folds
in_csv_train (str) – paths to train csv separated by commas
in_csv_valid (str) – paths to valid csv separated by commas
in_csv_infer (str) – paths to infer csv separated by commas
tag2class (Dict[str, int]) – mapping from label names into ints
tag_column (str) – column with label names
class_column (str) – column to use for split
- Returns
tuple with 4 elements (whole dataframe, list with train data, list with valid data and list with infer data)
- Return type
(Tuple[pd.DataFrame, List[dict], List[dict], List[dict]])
-
catalyst.contrib.utils.pandas.
balance_classes
(dataframe: pandas.core.frame.DataFrame, class_column: str = 'label', random_state: int = 42, how: str = 'downsampling') → pandas.core.frame.DataFrame[source]¶ Balance classes in dataframe by
class_column
.See also
catalyst.data.sampler.BalanceClassSampler
.- Parameters
dataframe – a dataset
class_column – which column to use for split
random_state – seed for random shuffle
how – strategy to sample must be one on [“downsampling”, “upsampling”]
- Returns
new dataframe with balanced
class_column
- Return type
pd.DataFrame
Parallel¶
-
catalyst.contrib.utils.parallel.
parallel_imap
(func, args, pool: Union[multiprocessing.pool.Pool, catalyst.contrib.utils.parallel.DumbPool]) → List[T][source]¶ @TODO: Docs. Contribution is welcome.
Plotly¶
-
catalyst.contrib.utils.plotly.
plot_tensorboard_log
(logdir: Union[str, pathlib.Path], step: Optional[str] = 'batch', metrics: Optional[List[str]] = None, height: Optional[int] = None, width: Optional[int] = None) → None[source]¶ @TODO: Docs. Contribution is welcome.
Adapted from https://github.com/belskikh/kekas/blob/v0.1.23/kekas/utils.py#L193
-
catalyst.contrib.utils.plotly.
plot_metrics
(logdir: Union[str, pathlib.Path], step: Optional[str] = 'epoch', metrics: Optional[List[str]] = None, height: Optional[int] = None, width: Optional[int] = None) → None[source]¶ Plots your learning results.
- Parameters
logdir – the logdir that was specified during training.
step – ‘batch’ or ‘epoch’ - what logs to show: for batches or for epochs
metrics – list of metrics to plot. The loss should be specified as ‘loss’, learning rate = ‘_base/lr’ and other metrics should be specified as names in metrics dict that was specified during training
height – the height of the whole resulting plot
width – the width of the whole resulting plot
Serialization¶
-
catalyst.contrib.utils.serialization.
serialize
(data)¶ Serialize the data into bytes using pickle.
- Parameters
data – a value
- Returns
Returns a bytes object serialized with pickle data.
-
catalyst.contrib.utils.serialization.
deserialize
(data)¶ Deserialize bytes into an object using pickle.
- Parameters
bytes – a bytes object containing serialized with pickle data.
- Returns
Returns a value deserialized from the bytes-like object.
Visualization¶
-
catalyst.contrib.utils.visualization.
plot_confusion_matrix
(cm, class_names=None, normalize=False, title='confusion matrix', fname=None, show=True, figsize=12, fontsize=32, colormap='Blues')[source]¶ Render the confusion matrix and return matplotlib”s figure with it. Normalization can be applied by setting normalize=True.
Computer Vision utilities¶
Image¶
-
catalyst.contrib.utils.cv.image.
has_image_extension
(uri) → bool[source]¶ Check that file has image extension.
- Parameters
uri (Union[str, pathlib.Path]) – the resource to load the file from
- Returns
True if file has image extension, False otherwise
- Return type
bool
-
catalyst.contrib.utils.cv.image.
imread
(uri, grayscale: bool = False, expand_dims: bool = True, rootpath: Union[str, pathlib.Path] = None, **kwargs) → numpy.ndarray[source]¶ Reads an image from the specified file.
- Parameters
uri (str, pathlib.Path, bytes, file) – the resource to load the image from, e.g. a filename,
pathlib.Path
, http address or file object, seeimageio.imread
docs for more infograyscale (bool) –
expand_dims (bool) –
rootpath (Union[str, pathlib.Path]) – path to the resource with image (allows to use relative path)
- Returns
image
- Return type
np.ndarray
-
catalyst.contrib.utils.cv.image.
imwrite
(**kwargs)[source]¶ imwrite(uri, im, format=None, **kwargs)
Write an image to the specified file. Alias for
imageio.imwrite
.- Parameters
**kwargs – parameters for
imageio.imwrite
-
catalyst.contrib.utils.cv.image.
imsave
(**kwargs)[source]¶ imwrite(uri, im, format=None, **kwargs)
Write an image to the specified file. Alias for
imageio.imsave
.- Parameters
**kwargs – parameters for
imageio.imsave
-
catalyst.contrib.utils.cv.image.
mask_to_overlay_image
(image: numpy.ndarray, masks: List[numpy.ndarray], threshold: float = 0, mask_strength: float = 0.5) → numpy.ndarray[source]¶ Draws every mask for with some color over image.
- Parameters
image (np.ndarray) – RGB image used as underlay for masks
masks (List[np.ndarray]) – list of masks
threshold (float) – threshold for masks binarization
mask_strength (float) – opacity of colorized masks
- Returns
HxWx3 image with overlay
- Return type
np.ndarray
-
catalyst.contrib.utils.cv.image.
mimread
(uri, clip_range: Tuple[int, int] = None, expand_dims: bool = True, rootpath: Union[str, pathlib.Path] = None, **kwargs) → numpy.ndarray[source]¶ Reads multiple images from the specified file.
- Parameters
uri (str, pathlib.Path, bytes, file) – the resource to load the image from, e.g. a filename,
pathlib.Path
, http address or file object, seeimageio.mimread
docs for more infoclip_range (Tuple[int, int]) – lower and upper interval edges, image values outside the interval are clipped to the interval edges
expand_dims (bool) – if True, append channel axis to grayscale images rootpath (Union[str, pathlib.Path]): path to the resource with image (allows to use relative path),
- Returns
image
- Return type
np.ndarray
Tensor¶
-
catalyst.contrib.utils.cv.tensor.
tensor_from_rgb_image
(image: numpy.ndarray) → torch.Tensor[source]¶ @TODO: Docs. Contribution is welcome.
-
catalyst.contrib.utils.cv.tensor.
tensor_to_ndimage
(images: torch.Tensor, denormalize: bool = True, mean: Tuple[float, float, float] = (0.485, 0.456, 0.406), std: Tuple[float, float, float] = (0.229, 0.224, 0.225), move_channels_dim: bool = True, dtype=<class 'numpy.float32'>) → numpy.ndarray[source]¶ Convert float image(s) with standard normalization to np.ndarray with [0..1] when dtype is np.float32 and [0..255] when dtype is np.uint8.
- Parameters
images (torch.Tensor) – [B]xCxHxW float tensor
denormalize (bool) – if True, multiply image(s) by std and add mean
mean (Tuple[float, float, float]) – per channel mean to add
std (Tuple[float, float, float]) – per channel std to multiply
move_channels_dim (bool) – if True, convert tensor to [B]xHxWxC format
dtype – result ndarray dtype. Only float32 and uint8 are supported
- Returns
[B]xHxWxC np.ndarray of dtype
Natural Language Processing utilities¶
Text¶
-
catalyst.contrib.utils.nlp.text.
tokenize_text
(text: str, tokenizer, max_length: int, strip: bool = True, lowercase: bool = True, remove_punctuation: bool = True) → Dict[str, numpy.array][source]¶ Tokenizes givin text.
- Parameters
text (str) – text to tokenize
tokenizer – Tokenizer instance from HuggingFace
max_length (int) – maximum length of tokens
strip (bool) – if true strips text before tokenizing
lowercase (bool) – if true makes text lowercase before tokenizing
remove_punctuation (bool) – if true removes
string.punctuation
from text before tokenizing