Contrib¶
Datasets¶
MNIST¶
- 
class catalyst.contrib.datasets.mnist.MNIST(root, train=True, transform=None, target_transform=None, download=False)[source]¶
- Bases: - torch.utils.data.dataset.Dataset- MNIST Dataset. - 
__init__(root, train=True, transform=None, target_transform=None, download=False)[source]¶
- Parameters
- root – Root directory of dataset where - MNIST/processed/training.ptand- MNIST/processed/test.ptexist.
- train (bool, optional) – If True, creates dataset from - training.pt, otherwise from- test.pt.
- download (bool, optional) – If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. 
- transform (callable, optional) – A function/transform that takes in an image and returns a transformed version. 
- target_transform (callable, optional) – A function/transform that takes in the target and transforms it. 
 
 
 - 
property class_to_idx¶
- Docs. Contribution is welcome. - Type
- @TODO 
 
 - 
classes= ['0 - zero', '1 - one', '2 - two', '3 - three', '4 - four', '5 - five', '6 - six', '7 - seven', '8 - eight', '9 - nine']¶
 - 
property processed_folder¶
- Docs. Contribution is welcome. - Type
- @TODO 
 
 - 
property raw_folder¶
- Docs. Contribution is welcome. - Type
- @TODO 
 
 - 
resources= [('http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz', 'f68b3c2dcbeaaa9fbdd348bbdeb94873'), ('http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz', 'd53e105ee54ea40749a09fcbcd1e9432'), ('http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz', '9fb629c4189551a2d022fa330f9573f3'), ('http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz', 'ec29112dd5afa0611ce80d1b7f02629c')]¶
 - 
test_file= 'test.pt'¶
 - 
training_file= 'training.pt'¶
 
- 
- 
class catalyst.contrib.datasets.mnist.MnistMLDataset(**kwargs)[source]¶
- Bases: - catalyst.data.dataset.metric_learning.MetricLearningTrainDataset,- catalyst.contrib.datasets.mnist.MNIST- Simple wrapper for MNIST dataset for metric learning train stage. This dataset can be used only for training. For test stage use MnistQGDataset. - For this dataset we use only training part of the MNIST and only those images that are labeled as 0, 1, 2, 3, 4. - 
__init__(**kwargs)[source]¶
- Raises
- ValueError – if train argument is False (MnistMLDataset should be used only for training) 
 
 - 
classes= ['0 - zero', '1 - one', '2 - two', '3 - three', '4 - four']¶
 
- 
- 
class catalyst.contrib.datasets.mnist.MnistQGDataset(root: str, transform: Optional[Callable] = None, gallery_fraq: Optional[float] = 0.2)[source]¶
- Bases: - catalyst.data.dataset.metric_learning.QueryGalleryDataset- MNIST for metric learning with query and gallery split. MnistQGDataset should be used for test stage. - For this dataset we used only test part of the MNIST and only those images that are labeled as 5, 6, 7, 8, 9. - 
__init__(root: str, transform: Optional[Callable] = None, gallery_fraq: Optional[float] = 0.2) → None[source]¶
- Parameters
- root – root directory for storing dataset 
- transform – transform 
- gallery_fraq – gallery size 
 
 
 - 
classes= ['5 - five', '6 - six', '7 - seven', '8 - eight', '9 - nine']¶
 - 
property data¶
- Images from MNIST 
 - 
property gallery_size¶
- Query Gallery dataset should have gallery_size property 
 - 
property query_size¶
- Query Gallery dataset should have query_size property 
 - 
property targets¶
- Labels of digits 
 
- 
MovieLens¶
- 
class catalyst.contrib.datasets.movielens.MovieLens(root, train=True, download=False, min_rating=0.0)[source]¶
- Bases: - torch.utils.data.dataset.Dataset- MovieLens data sets were collected by the GroupLens Research Project at the University of Minnesota. - This data set consists of: * 100,000 ratings (1-5) from 943 users on 1682 movies. * Each user has rated at least 20 movies. * Simple demographic info for the users (age, gender, occupation, zip) - The data was collected through the MovieLens web site (movielens.umn.edu) during the seven-month period from September 19th, 1997 through April 22nd, 1998. This data has been cleaned up - users who had less than 20 ratings or did not have complete demographic information were removed from this data set. Detailed descriptions of the data file can be found at the end of this file. - Neither the University of Minnesota nor any of the researchers involved can guarantee the correctness of the data, its suitability for any particular purpose, or the validity of results based on the use of the data set. The data set may be used for any research purposes under the following conditions: * The user may not state or imply any endorsement from the University of Minnesota or the GroupLens Research Group. * The user must acknowledge the use of the data set in publications resulting from the use of the data set (see below for citation information). * The user may not redistribute the data without separate permission. * The user may not use this information for any commercial or revenue-bearing purposes without first obtaining permission from a faculty member of the GroupLens Research Project at the University of Minnesota. - If you have any further questions or comments, please contact GroupLens <grouplens-info@cs.umn.edu>. http://files.grouplens.org/datasets/movielens/ml-100k-README.txt - 
__init__(root, train=True, download=False, min_rating=0.0)[source]¶
- Parameters
- root (string) – Root directory of dataset where - MovieLens/processed/training.ptand- MovieLens/processed/test.ptexist.
- train (bool, optional) – If True, creates dataset from - training.pt, otherwise from- test.pt.
- download (bool, optional) – If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. 
- min_rating (float, optional) – Minimum rating to include in the interaction matrix 
 
 
 - 
filename= 'ml-100k.zip'¶
 - 
property processed_folder¶
- Create the folder for the processed files 
 - 
property raw_folder¶
- Create raw folder for data download 
 - 
resources= ('http://files.grouplens.org/datasets/movielens/ml-100k.zip', '0e33842e24a9c977be4e0107933c0723')¶
 - 
test_file= 'test.pt'¶
 - 
training_file= 'training.pt'¶
 
- 
Computer Vision¶
ImageClassificationDataset¶
- 
class catalyst.contrib.datasets.cv.fastai.ImageClassificationDataset(root: str, train: bool = True, download: bool = False, **kwargs)[source]¶
- Bases: - catalyst.data.cv.dataset.ImageFolderDataset- Base class for datasets with the following structure: - path/to/dataset/ |-- train/ | |-- class1/ # folder of N images | | |-- train_image11 | | |-- train_image12 | | ... | | `-- train_image1N | ... | `-- classM/ # folder of K images | |-- train_imageM1 | |-- train_imageM2 | ... | `-- train_imageMK `-- val/ |-- class1/ # folder of P images | |-- val_image11 | |-- val_image12 | ... | `-- val_image1P ... `-- classM/ # folder of T images |-- val_imageT1 |-- val_imageT2 ... `-- val_imageMT - 
__init__(root: str, train: bool = True, download: bool = False, **kwargs)[source]¶
- Constructor method for the - ImageClassificationDatasetclass.- Parameters
- root – root directory of dataset 
- train – if - True, creates dataset from- train/subfolder, otherwise from- val/
- download – if - True, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again
- **kwargs – 
 
 
 - 
resources= None¶
 
- 
Imagenette¶
- 
class catalyst.contrib.datasets.cv.imagenette.Imagenette(root: str, train: bool = True, download: bool = False, **kwargs)[source]¶
- Bases: - catalyst.contrib.datasets.cv.fastai.ImageClassificationDataset- Imagenette Dataset. - 
name= 'imagenette2'¶
 - 
resources= [('https://s3.amazonaws.com/fast-ai-imageclas/imagenette2.tgz', '43b0d8047b7501984c47ae3c08110b62')]¶
 
- 
- 
class catalyst.contrib.datasets.cv.imagenette.Imagenette160(root: str, train: bool = True, download: bool = False, **kwargs)[source]¶
- Bases: - catalyst.contrib.datasets.cv.fastai.ImageClassificationDataset- Imagenette Dataset with images resized so that the shortest size is 160 px. - 
name= 'imagenette2-160'¶
 - 
resources= [('https://s3.amazonaws.com/fast-ai-imageclas/imagenette2-160.tgz', '0edfc972b5c9817ac36517c0057f3869')]¶
 
- 
- 
class catalyst.contrib.datasets.cv.imagenette.Imagenette320(root: str, train: bool = True, download: bool = False, **kwargs)[source]¶
- Bases: - catalyst.contrib.datasets.cv.fastai.ImageClassificationDataset- Imagenette Dataset with images resized so that the shortest size is 320 px. - 
name= 'imagenette2-320'¶
 - 
resources= [('https://s3.amazonaws.com/fast-ai-imageclas/imagenette2-320.tgz', '3d9f4d75d012a679600ef8ac0c200d28')]¶
 
- 
Imagewoof¶
- 
class catalyst.contrib.datasets.cv.imagewoof.Imagewoof(root: str, train: bool = True, download: bool = False, **kwargs)[source]¶
- Bases: - catalyst.contrib.datasets.cv.fastai.ImageClassificationDataset- Imagewoof Dataset. - 
name= 'imagewoof2'¶
 - 
resources= [('https://s3.amazonaws.com/fast-ai-imageclas/imagewoof2.tgz', '5eaf5bbf4bf16a77c616dc6e8dd5f8e9')]¶
 
- 
- 
class catalyst.contrib.datasets.cv.imagewoof.Imagewoof160(root: str, train: bool = True, download: bool = False, **kwargs)[source]¶
- Bases: - catalyst.contrib.datasets.cv.fastai.ImageClassificationDataset- Imagewoof Dataset with images resized so that the shortest size is 160 px. - 
name= 'imagewoof2-160'¶
 - 
resources= [('https://s3.amazonaws.com/fast-ai-imageclas/imagewoof2-160.tgz', 'fcd23cc7dfce8837c95a8f9d63a128b7')]¶
 
- 
- 
class catalyst.contrib.datasets.cv.imagewoof.Imagewoof320(root: str, train: bool = True, download: bool = False, **kwargs)[source]¶
- Bases: - catalyst.contrib.datasets.cv.fastai.ImageClassificationDataset- Imagewoof Dataset with images resized so that the shortest size is 320 px. - 
name= 'imagewoof2-320'¶
 - 
resources= [('https://s3.amazonaws.com/fast-ai-imageclas/imagewoof2-320.tgz', 'af65be7963816efa949fa3c3b4947740')]¶
 
- 
Imagewang¶
- 
class catalyst.contrib.datasets.cv.imagewang.Imagewang(root: str, train: bool = True, download: bool = False, **kwargs)[source]¶
- Bases: - catalyst.contrib.datasets.cv.fastai.ImageClassificationDataset- Imagewang Dataset. - 
name= 'imagewang'¶
 - 
resources= [('https://s3.amazonaws.com/fast-ai-imageclas/imagewang.tgz', '46f9749616a29837e7cd67b103396f6e')]¶
 
- 
- 
class catalyst.contrib.datasets.cv.imagewang.Imagewang160(root: str, train: bool = True, download: bool = False, **kwargs)[source]¶
- Bases: - catalyst.contrib.datasets.cv.fastai.ImageClassificationDataset- Imagewang Dataset with images resized so that the shortest size is 160 px. - 
name= 'imagewang-160'¶
 - 
resources= [('https://s3.amazonaws.com/fast-ai-imageclas/imagewang-160.tgz', '1dc388d37d1dc52836c06749e14e37bc')]¶
 
- 
- 
class catalyst.contrib.datasets.cv.imagewang.Imagewang320(root: str, train: bool = True, download: bool = False, **kwargs)[source]¶
- Bases: - catalyst.contrib.datasets.cv.fastai.ImageClassificationDataset- Imagewang Dataset with images resized so that the shortest size is 320 px. - 
name= 'imagewang-320'¶
 - 
resources= [('https://s3.amazonaws.com/fast-ai-imageclas/imagewang-320.tgz', 'ff01d7c126230afce776bdf72bda87e6')]¶
 
- 
NN¶
Extensions for torch.nn
Criterion¶
Cross entropy¶
- 
class catalyst.contrib.nn.criterion.ce.MaskCrossEntropyLoss(*args, **kwargs)[source]¶
- Bases: - torch.nn.modules.module.Module- @TODO: Docs. Contribution is welcome. 
- 
class catalyst.contrib.nn.criterion.ce.SymmetricCrossEntropyLoss(alpha: float = 1.0, beta: float = 1.0)[source]¶
- Bases: - torch.nn.modules.module.Module- The Symmetric Cross Entropy loss. - It has been proposed in Symmetric Cross Entropy for Robust Learning with Noisy Labels. - 
__init__(alpha: float = 1.0, beta: float = 1.0)[source]¶
- Parameters
- alpha (float) – corresponds to overfitting issue of CE 
- beta (float) – corresponds to flexible exploration on the robustness of RCE 
 
 
 - 
forward(input_: torch.Tensor, target: torch.Tensor) → torch.Tensor[source]¶
- Calculates loss between - input_and- targettensors.- Parameters
- input_ – input tensor of size (batch_size, num_classes) 
- target – target tensor of size (batch_size), where values of a vector correspond to class index 
 
- Returns
- computed loss 
- Return type
- torch.Tensor 
 
 
- 
Circle¶
- 
class catalyst.contrib.nn.criterion.circle.CircleLoss(margin: float, gamma: float)[source]¶
- Bases: - torch.nn.modules.module.Module- CircleLoss from Circle Loss: A Unified Perspective of Pair Similarity Optimization paper. - Adapter from: https://github.com/TinyZeaMays/CircleLoss - Example - >>> import torch >>> from torch.nn import functional as F >>> from catalyst.contrib.nn import CircleLoss >>> >>> features = F.normalize(torch.rand(256, 64, requires_grad=True)) >>> labels = torch.randint(high=10, size=(256,)) >>> criterion = CircleLoss(margin=0.25, gamma=256) >>> criterion(features, labels) 
Contrastive¶
- 
class catalyst.contrib.nn.criterion.contrastive.ContrastiveEmbeddingLoss(margin=1.0, reduction='mean')[source]¶
- Bases: - torch.nn.modules.module.Module- The Contrastive embedding loss. - It has been proposed in Dimensionality Reduction by Learning an Invariant Mapping. - 
__init__(margin=1.0, reduction='mean')[source]¶
- Parameters
- margin – margin parameter 
- reduction – criterion reduction type 
 
 
 - 
forward(embeddings_left: torch.Tensor, embeddings_right: torch.Tensor, distance_true) → torch.Tensor[source]¶
- Forward propagation method for the contrastive loss. - Parameters
- embeddings_left – left objects embeddings 
- embeddings_right – right objects embeddings 
- distance_true – true distances 
 
- Returns
- loss 
- Return type
- torch.Tensor 
 
 
- 
- 
class catalyst.contrib.nn.criterion.contrastive.ContrastiveDistanceLoss(margin=1.0, reduction='mean')[source]¶
- Bases: - torch.nn.modules.module.Module- The Contrastive distance loss. - @TODO: Docs. Contribution is welcome. 
- 
class catalyst.contrib.nn.criterion.contrastive.ContrastivePairwiseEmbeddingLoss(margin=1.0, reduction='mean')[source]¶
- Bases: - torch.nn.modules.module.Module- ContrastivePairwiseEmbeddingLoss – proof of concept criterion. - Still work in progress. - @TODO: Docs. Contribution is welcome. 
Dice¶
- 
class catalyst.contrib.nn.criterion.dice.BCEDiceLoss(eps: float = 1e-07, threshold: float = None, activation: str = 'Sigmoid', bce_weight: float = 0.5, dice_weight: float = 0.5)[source]¶
- Bases: - torch.nn.modules.module.Module- @TODO: Docs. Contribution is welcome. 
- 
class catalyst.contrib.nn.criterion.dice.DiceLoss(eps: float = 1e-07, threshold: float = None, activation: str = 'Sigmoid')[source]¶
- Bases: - torch.nn.modules.module.Module- @TODO: Docs. Contribution is welcome. 
Focal¶
- 
class catalyst.contrib.nn.criterion.focal.FocalLossBinary(ignore: int = None, reduced: bool = False, gamma: float = 2.0, alpha: float = 0.25, threshold: float = 0.5, reduction: str = 'mean')[source]¶
- Bases: - torch.nn.modules.loss._Loss- Compute focal loss for binary classification problem. - It has been proposed in Focal Loss for Dense Object Detection paper. - @TODO: Docs (add Example). Contribution is welcome. 
- 
class catalyst.contrib.nn.criterion.focal.FocalLossMultiClass(ignore: int = None, reduced: bool = False, gamma: float = 2.0, alpha: float = 0.25, threshold: float = 0.5, reduction: str = 'mean')[source]¶
- Bases: - catalyst.contrib.nn.criterion.focal.FocalLossBinary- Compute focal loss for multi-class problem. Ignores targets having -1 label. - It has been proposed in Focal Loss for Dense Object Detection paper. - @TODO: Docs (add Example). Contribution is welcome. 
GAN¶
- 
class catalyst.contrib.nn.criterion.gan.MeanOutputLoss[source]¶
- Bases: - torch.nn.modules.module.Module- Criterion to compute simple mean of the output, completely ignoring target (maybe useful e.g. for WGAN real/fake validity averaging. 
Huber¶
IOU¶
- 
class catalyst.contrib.nn.criterion.iou.IoULoss(eps: float = 1e-07, threshold: float = None, activation: str = 'Sigmoid')[source]¶
- Bases: - torch.nn.modules.module.Module- The intersection over union (Jaccard) loss. - @TODO: Docs. Contribution is welcome. 
- 
class catalyst.contrib.nn.criterion.iou.BCEIoULoss(eps: float = 1e-07, threshold: float = None, activation: str = 'Sigmoid', reduction: str = 'mean')[source]¶
- Bases: - torch.nn.modules.module.Module- The Intersection over union (Jaccard) with BCE loss. - @TODO: Docs. Contribution is welcome. - 
__init__(eps: float = 1e-07, threshold: float = None, activation: str = 'Sigmoid', reduction: str = 'mean')[source]¶
- Parameters
- eps – epsilon to avoid zero division 
- threshold – threshold for outputs binarization 
- activation – An torch.nn activation applied to the outputs. Must be one of - 'none',- 'Sigmoid',- 'Softmax2d'
- reduction – Specifies the reduction to apply to the output of BCE 
 
 
 
- 
Lovasz¶
- 
class catalyst.contrib.nn.criterion.lovasz.LovaszLossBinary(per_image=False, ignore=None)[source]¶
- Bases: - torch.nn.modules.loss._Loss- Creates a criterion that optimizes a binary Lovasz loss. - It has been proposed in The Lovasz-Softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks. 
- 
class catalyst.contrib.nn.criterion.lovasz.LovaszLossMultiClass(per_image=False, ignore=None)[source]¶
- Bases: - torch.nn.modules.loss._Loss- Creates a criterion that optimizes a multi-class Lovasz loss. - It has been proposed in The Lovasz-Softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks. 
- 
class catalyst.contrib.nn.criterion.lovasz.LovaszLossMultiLabel(per_image=False, ignore=None)[source]¶
- Bases: - torch.nn.modules.loss._Loss- Creates a criterion that optimizes a multi-label Lovasz loss. - It has been proposed in The Lovasz-Softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks. 
Margin¶
- 
class catalyst.contrib.nn.criterion.margin.MarginLoss(alpha: float = 0.2, beta: float = 1.0, skip_labels: Union[int, List[int]] = -1)[source]¶
- Bases: - torch.nn.modules.module.Module- Margin loss criterion 
Triplet¶
- 
class catalyst.contrib.nn.criterion.triplet.TripletLoss(margin: float = 0.3)[source]¶
- Bases: - torch.nn.modules.module.Module- Triplet loss with hard positive/negative mining. - Adapted from: https://github.com/NegatioN/OnlineMiningTripletLoss 
- 
class catalyst.contrib.nn.criterion.triplet.TripletLossV2(margin=0.3)[source]¶
- Bases: - torch.nn.modules.module.Module- @TODO: Docs. Contribution is welcome. 
- 
class catalyst.contrib.nn.criterion.triplet.TripletPairwiseEmbeddingLoss(margin: float = 0.3, reduction: str = 'mean')[source]¶
- Bases: - torch.nn.modules.module.Module- TripletPairwiseEmbeddingLoss – proof of concept criterion. - Still work in progress. - @TODO: Docs. Contribution is welcome. 
- 
class catalyst.contrib.nn.criterion.triplet.TripletMarginLossWithSampler(margin: float, sampler_inbatch: IInbatchTripletSampler)[source]¶
- Bases: - torch.nn.modules.module.Module- This class combines in-batch sampling of triplets and default TripletMargingLoss from PyTorch. 
Wing¶
- 
class catalyst.contrib.nn.criterion.wing.WingLoss(width: int = 5, curvature: float = 0.5, reduction: str = 'mean')[source]¶
- Bases: - torch.nn.modules.module.Module- Creates a criterion that optimizes a Wing loss. - It has been proposed in Wing Loss for Robust Facial Landmark Localisation with Convolutional Neural Networks. - Examples - @TODO: Docs. Contribution is welcome. - Adapted from: https://github.com/BloodAxe/pytorch-toolbelt 
Modules¶
ArcFace and SubCenterArcFace¶
- 
class catalyst.contrib.nn.modules.arcface.ArcFace(in_features: int, out_features: int, s: float = 64.0, m: float = 0.5, eps: float = 1e-06)[source]¶
- Bases: - torch.nn.modules.module.Module- Implementation of ArcFace: Additive Angular Margin Loss for Deep Face Recognition. - Parameters
- in_features – size of each input sample. 
- out_features – size of each output sample. 
- s – norm of input feature. Default: - 64.0.
- m – margin. Default: - 0.5.
- eps – operation accuracy. Default: - 1e-6.
 
 - Shape:
- Input: \((batch, H_{in})\) where \(H_{in} = in\_features\). 
- Output: \((batch, H_{out})\) where \(H_{out} = out\_features\). 
 
 - Example - >>> layer = ArcFace(5, 10, s=1.31, m=0.5) >>> loss_fn = nn.CrosEntropyLoss() >>> embedding = torch.randn(3, 5, requires_grad=True) >>> target = torch.empty(3, dtype=torch.long).random_(10) >>> output = layer(embedding, target) >>> loss = loss_fn(output, target) >>> loss.backward() - 
forward(input: torch.Tensor, target: torch.LongTensor) → torch.Tensor[source]¶
- Parameters
- input – input features, expected shapes - BxFwhere- Bis batch dimension and- Fis an input feature dimension.
- target – target classes, expected shapes - Bwhere- Bis batch dimension.
 
- Returns
- tensor (logits) with shapes - BxCwhere- Cis a number of classes (out_features).
 
 
- 
class catalyst.contrib.nn.modules.arcface.SubCenterArcFace(in_features: int, out_features: int, s: float = 64.0, m: float = 0.5, k: int = 3, eps: float = 1e-06)[source]¶
- Bases: - torch.nn.modules.module.Module- Implementation of Sub-center ArcFace: Boosting Face Recognition by Large-scale Noisy Web Faces. - Parameters
- in_features – size of each input sample. 
- out_features – size of each output sample. 
- s – norm of input feature, Default: - 64.0.
- m – margin. Default: - 0.5.
- k – number of possible class centroids. Default: - 3.
- eps (float, optional) – operation accuracy. Default: - 1e-6.
 
 - Shape:
- Input: \((batch, H_{in})\) where \(H_{in} = in\_features\). 
- Output: \((batch, H_{out})\) where \(H_{out} = out\_features\). 
 
 - Example - >>> layer = SubCenterArcFace(5, 10, s=1.31, m=0.35, k=2) >>> loss_fn = nn.CrosEntropyLoss() >>> embedding = torch.randn(3, 5, requires_grad=True) >>> target = torch.empty(3, dtype=torch.long).random_(10) >>> output = layer(embedding, target) >>> loss = loss_fn(output, target) >>> loss.backward() - 
forward(input: torch.Tensor, label: torch.LongTensor) → torch.Tensor[source]¶
- Parameters
- input – input features, expected shapes - BxFwhere- Bis batch dimension and- Fis an input feature dimension.
- label – target classes, expected shapes - Bwhere- Bis batch dimension.
 
- Returns
- tensor (logits) with shapes - BxCwhere- Cis a number of classes.
 
 
Arc Margin Product¶
- 
class catalyst.contrib.nn.modules.arcmargin.ArcMarginProduct(in_features: int, out_features: int)[source]¶
- Bases: - torch.nn.modules.module.Module- Implementation of Arc Margin Product. - Parameters
- in_features – size of each input sample. 
- out_features – size of each output sample. 
 
 - Shape:
- Input: \((batch, H_{in})\) where \(H_{in} = in\_features\). 
- Output: \((batch, H_{out})\) where \(H_{out} = out\_features\). 
 
 - Example - >>> layer = ArcMarginProduct(5, 10) >>> loss_fn = nn.CrosEntropyLoss() >>> embedding = torch.randn(3, 5, requires_grad=True) >>> target = torch.empty(3, dtype=torch.long).random_(10) >>> output = layer(embedding) >>> loss = loss_fn(output, target) >>> loss.backward() 
Common modules¶
- 
class catalyst.contrib.nn.modules.common.Flatten[source]¶
- Bases: - torch.nn.modules.module.Module- Flattens the input. Does not affect the batch size. - @TODO: Docs (add Example). Contribution is welcome. 
- 
class catalyst.contrib.nn.modules.common.Lambda(lambda_fn)[source]¶
- Bases: - torch.nn.modules.module.Module- @TODO: Docs. Contribution is welcome. 
- 
class catalyst.contrib.nn.modules.common.Normalize(**normalize_kwargs)[source]¶
- Bases: - torch.nn.modules.module.Module- Performs \(L_p\) normalization of inputs over specified dimension. - @TODO: Docs (add Example). Contribution is welcome. 
- 
class catalyst.contrib.nn.modules.common.GaussianNoise(stddev: float = 0.1)[source]¶
- Bases: - torch.nn.modules.module.Module- A gaussian noise module. - Shape: - Input: (batch, *) 
- Output: (batch, *) (same shape as input) 
 
CosFace and AdaCos¶
- 
class catalyst.contrib.nn.modules.cosface.CosFace(in_features: int, out_features: int, s: float = 64.0, m: float = 0.35)[source]¶
- Bases: - torch.nn.modules.module.Module- Implementation of CosFace: Large Margin Cosine Loss for Deep Face Recognition. - Parameters
- in_features – size of each input sample. 
- out_features – size of each output sample. 
- s – norm of input feature. Default: - 64.0.
- m – margin. Default: - 0.35.
 
 - Shape:
- Input: \((batch, H_{in})\) where \(H_{in} = in\_features\). 
- Output: \((batch, H_{out})\) where \(H_{out} = out\_features\). 
 
 - Example - >>> layer = CosFaceLoss(5, 10, s=1.31, m=0.1) >>> loss_fn = nn.CrosEntropyLoss() >>> embedding = torch.randn(3, 5, requires_grad=True) >>> target = torch.empty(3, dtype=torch.long).random_(10) >>> output = layer(embedding, target) >>> loss = loss_fn(output, target) >>> loss.backward() - 
forward(input: torch.Tensor, target: torch.LongTensor) → torch.Tensor[source]¶
- Parameters
- input – input features, expected shapes - BxFwhere- Bis batch dimension and- Fis an input feature dimension.
- target – target classes, expected shapes - Bwhere- Bis batch dimension.
 
- Returns
- tensor (logits) with shapes - BxCwhere- Cis a number of classes (out_features).
 
 
- 
class catalyst.contrib.nn.modules.cosface.AdaCos(in_features: int, out_features: int, dynamical_s: bool = True, eps: float = 1e-06)[source]¶
- Bases: - torch.nn.modules.module.Module- Implementation of AdaCos: Adaptively Scaling Cosine Logits for Effectively Learning Deep Face Representations. - Parameters
- in_features – size of each input sample. 
- out_features – size of each output sample. 
- dynamical_s – option to use dynamical scale parameter. If - Falsethen will be used initial scale. Default:- True.
- eps – operation accuracy. Default: - 1e-6.
 
 - Shape:
- Input: \((batch, H_{in})\) where \(H_{in} = in\_features\). 
- Output: \((batch, H_{out})\) where \(H_{out} = out\_features\). 
 
 - Example - >>> layer = AdaCos(5, 10) >>> loss_fn = nn.CrosEntropyLoss() >>> embedding = torch.randn(3, 5, requires_grad=True) >>> target = torch.empty(3, dtype=torch.long).random_(10) >>> output = layer(embedding, target) >>> loss = loss_fn(output, target) >>> loss.backward() - 
forward(input: torch.Tensor, target: torch.LongTensor) → torch.Tensor[source]¶
- Parameters
- input – input features, expected shapes - BxFwhere- Bis batch dimension and- Fis an input feature dimension.
- target – target classes, expected shapes - Bwhere- Bis batch dimension.
 
- Returns
- tensor (logits) with shapes - BxCwhere- Cis a number of classes (out_features).
 
 
Last-Mean-Average-Attention (LAMA)-Pooling¶
- 
class catalyst.contrib.nn.modules.lama.TemporalLastPooling[source]¶
- Bases: - torch.nn.modules.module.Module- @TODO: Docs. Contribution is welcome. 
- 
class catalyst.contrib.nn.modules.lama.TemporalAvgPooling[source]¶
- Bases: - torch.nn.modules.module.Module- @TODO: Docs. Contribution is welcome. 
- 
class catalyst.contrib.nn.modules.lama.TemporalMaxPooling[source]¶
- Bases: - torch.nn.modules.module.Module- @TODO: Docs. Contribution is welcome. 
- 
class catalyst.contrib.nn.modules.lama.TemporalDropLastWrapper(net)[source]¶
- Bases: - torch.nn.modules.module.Module- @TODO: Docs. Contribution is welcome. 
- 
class catalyst.contrib.nn.modules.lama.TemporalAttentionPooling(in_features, activation=None, kernel_size=1, **params)[source]¶
- Bases: - torch.nn.modules.module.Module- @TODO: Docs. Contribution is welcome. - 
__init__(in_features, activation=None, kernel_size=1, **params)[source]¶
- @TODO: Docs. Contribution is welcome. 
 - 
forward(x: torch.Tensor, mask: torch.Tensor = None) → torch.Tensor[source]¶
- Forward call. - Parameters
- x – tensor of size (batch_size, history_len, feature_size) 
- mask – mask to use 
 
- Returns
- pooling result 
 
 - 
name2activation= {'sigmoid': Sigmoid(), 'softmax': Softmax(dim=1), 'tanh': Tanh()}¶
 
- 
- 
class catalyst.contrib.nn.modules.lama.TemporalConcatPooling(in_features, history_len=1)[source]¶
- Bases: - torch.nn.modules.module.Module- @TODO: Docs. Contribution is welcome. 
- 
class catalyst.contrib.nn.modules.lama.LamaPooling(in_features, groups=None)[source]¶
- Bases: - torch.nn.modules.module.Module- @TODO: Docs. Contribution is welcome. - 
available_groups= ['last', 'avg', 'avg_droplast', 'max', 'max_droplast', 'sigmoid', 'sigmoid_droplast', 'softmax', 'softmax_droplast', 'tanh', 'tanh_droplast']¶
 
- 
Pooling¶
- 
class catalyst.contrib.nn.modules.pooling.GlobalAttnPool2d(in_features, activation_fn='Sigmoid')[source]¶
- Bases: - torch.nn.modules.module.Module- @TODO: Docs. Contribution is welcome. 
- 
class catalyst.contrib.nn.modules.pooling.GlobalAvgAttnPool2d(in_features, activation_fn='Sigmoid')[source]¶
- Bases: - torch.nn.modules.module.Module- @TODO: Docs (add Example). Contribution is welcome. 
- 
class catalyst.contrib.nn.modules.pooling.GlobalAvgPool2d[source]¶
- Bases: - torch.nn.modules.module.Module- Applies a 2D global average pooling operation over an input signal composed of several input planes. - @TODO: Docs (add Example). Contribution is welcome. 
- 
class catalyst.contrib.nn.modules.pooling.GlobalConcatAttnPool2d(in_features, activation_fn='Sigmoid')[source]¶
- Bases: - torch.nn.modules.module.Module- @TODO: Docs (add Example). Contribution is welcome. 
- 
class catalyst.contrib.nn.modules.pooling.GlobalConcatPool2d[source]¶
- Bases: - torch.nn.modules.module.Module- @TODO: Docs (add Example). Contribution is welcome. 
- 
class catalyst.contrib.nn.modules.pooling.GlobalMaxAttnPool2d(in_features, activation_fn='Sigmoid')[source]¶
- Bases: - torch.nn.modules.module.Module- @TODO: Docs (add Example). Contribution is welcome. 
RMSNorm¶
- 
class catalyst.contrib.nn.modules.rms_norm.RMSNorm(dimension: int, epsilon: float = 1e-08, is_bias: bool = False)[source]¶
- Bases: - torch.nn.modules.module.Module- An implementation of RMS Normalization. - @TODO: Docs (link to paper). Contribution is welcome. - 
__init__(dimension: int, epsilon: float = 1e-08, is_bias: bool = False)[source]¶
- Parameters
- dimension – the dimension of the layer output to normalize 
- epsilon – an epsilon to prevent dividing by zero in case the layer has zero variance. (default = 1e-8) 
- is_bias – a boolean value whether to include bias term while normalization 
 
 
 
- 
SqueezeAndExcitation¶
- 
class catalyst.contrib.nn.modules.se.sSE(in_channels: int)[source]¶
- Bases: - torch.nn.modules.module.Module- The sSE (Channel Squeeze and Spatial Excitation) block from the Concurrent Spatial and Channel ‘Squeeze & Excitation’ in Fully Convolutional Networks paper. - Adapted from https://www.kaggle.com/c/tgs-salt-identification-challenge/discussion/66178 - Shape: - Input: (batch, channels, height, width) 
- Output: (batch, channels, height, width) (same shape as input) 
 
- 
class catalyst.contrib.nn.modules.se.scSE(in_channels: int, r: int = 16)[source]¶
- Bases: - torch.nn.modules.module.Module- The scSE (Concurrent Spatial and Channel Squeeze and Channel Excitation) block from the Concurrent Spatial and Channel ‘Squeeze & Excitation’ in Fully Convolutional Networks paper. - Adapted from https://www.kaggle.com/c/tgs-salt-identification-challenge/discussion/66178 - Shape: - Input: (batch, channels, height, width) 
- Output: (batch, channels, height, width) (same shape as input) 
 
- 
class catalyst.contrib.nn.modules.se.cSE(in_channels: int, r: int = 16)[source]¶
- Bases: - torch.nn.modules.module.Module- The channel-wise SE (Squeeze and Excitation) block from the Squeeze-and-Excitation Networks paper. - Adapted from https://www.kaggle.com/c/tgs-salt-identification-challenge/discussion/65939 and https://www.kaggle.com/c/tgs-salt-identification-challenge/discussion/66178 - Shape: - Input: (batch, channels, height, width) 
- Output: (batch, channels, height, width) (same shape as input) 
 
SoftMax¶
- 
class catalyst.contrib.nn.modules.softmax.SoftMax(in_features: int, num_classes: int)[source]¶
- Bases: - torch.nn.modules.module.Module- Implementation of Significance of Softmax-based Features in Comparison to Distance Metric Learning-based Features. - Parameters
- in_features – size of each input sample. 
- out_features – size of each output sample. 
 
 - Shape:
- Input: \((batch, H_{in})\) where \(H_{in} = in\_features\). 
- Output: \((batch, H_{out})\) where \(H_{out} = out\_features\). 
 
 - Example - >>> layer = SoftMax(5, 10) >>> loss_fn = nn.CrosEntropyLoss() >>> embedding = torch.randn(3, 5, requires_grad=True) >>> target = torch.empty(3, dtype=torch.long).random_(10) >>> output = layer(embedding, target) >>> loss = loss_fn(output, target) >>> loss.backward() 
Optimizers¶
AdamP¶
AdamP Copyright (c) 2020-present NAVER Corp. MIT license
Original source code: https://github.com/clovaai/AdamP
- 
class catalyst.contrib.nn.optimizers.adamp.AdamP(params, lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, delta=0.1, wd_ratio=0.1, nesterov=False)[source]¶
- Bases: - torch.optim.optimizer.Optimizer- Implements AdamP algorithm. - The original Adam algorithm was proposed in Adam: A Method for Stochastic Optimization. The AdamP variant was proposed in Slowing Down the Weight Norm Increase in Momentum-based Optimizers. - Parameters
- params – iterable of parameters to optimize or dicts defining parameter groups 
- lr (float, optional) – learning rate (default: 1e-3) 
- betas (Tuple[float, float], optional) – coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999)) 
- eps (float, optional) – term added to the denominator to improve numerical stability (default: 1e-8) 
- weight_decay (float, optional) – weight decay coefficient (default: 0) 
- delta – threshold that determines whether a set of parameters is scale invariant or not (default: 0.1) 
- wd_ratio – relative weight decay applied on scale-invariant parameters compared to that applied on scale-variant parameters (default: 0.1) 
- nesterov (boolean, optional) – enables Nesterov momentum (default: False) 
 
 - 
__init__(params, lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, delta=0.1, wd_ratio=0.1, nesterov=False)[source]¶
- Parameters
- params – iterable of parameters to optimize or dicts defining parameter groups 
- lr (float, optional) – learning rate (default: 1e-3) 
- betas (Tuple[float, float], optional) – coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999)) 
- eps (float, optional) – term added to the denominator to improve numerical stability (default: 1e-8) 
- weight_decay (float, optional) – weight decay coefficient (default: 1e-2) 
- delta – threshold that determines whether a set of parameters is scale invariant or not (default: 0.1) 
- wd_ratio – relative weight decay applied on scale-invariant parameters compared to that applied on scale-variant parameters (default: 0.1) 
- nesterov (boolean, optional) – enables Nesterov momentum (default: False) 
 
 
 
Lamb¶
- 
class catalyst.contrib.nn.optimizers.lamb.Lamb(params, lr: Optional[float] = 0.001, betas: Optional[Tuple[float, float]] = (0.9, 0.999), eps: Optional[float] = 1e-06, weight_decay: Optional[float] = 0.0, adam: Optional[bool] = False)[source]¶
- Bases: - torch.optim.optimizer.Optimizer- Implements Lamb algorithm. - It has been proposed in Training BERT in 76 minutes. - 
__init__(params, lr: Optional[float] = 0.001, betas: Optional[Tuple[float, float]] = (0.9, 0.999), eps: Optional[float] = 1e-06, weight_decay: Optional[float] = 0.0, adam: Optional[bool] = False)[source]¶
- Parameters
- params – iterable of parameters to optimize or dicts defining parameter groups 
- lr (float, optional) – learning rate (default: 1e-3) 
- betas (Tuple[float, float], optional) – coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999)) 
- eps (float, optional) – term added to the denominator to improve numerical stability (default: 1e-8) 
- weight_decay (float, optional) – weight decay (L2 penalty) (default: 0) 
- adam (bool, optional) – always use trust ratio = 1, which turns this into Adam. Useful for comparison purposes. 
 
 
 
- 
Lookahead¶
- 
class catalyst.contrib.nn.optimizers.lookahead.Lookahead(optimizer: torch.optim.optimizer.Optimizer, k: int = 5, alpha: float = 0.5)[source]¶
- Bases: - torch.optim.optimizer.Optimizer- Implements Lookahead algorithm. - It has been proposed in Lookahead Optimizer: k steps forward, 1 step back. - Adapted from: https://github.com/alphadl/lookahead.pytorch (MIT License) - 
__init__(optimizer: torch.optim.optimizer.Optimizer, k: int = 5, alpha: float = 0.5)[source]¶
- @TODO: Docs. Contribution is welcome. 
 - 
classmethod get_from_params(params: Dict, base_optimizer_params: Dict = None, **kwargs) → catalyst.contrib.nn.optimizers.lookahead.Lookahead[source]¶
- @TODO: Docs. Contribution is welcome. 
 
- 
QHAdamW¶
- 
class catalyst.contrib.nn.optimizers.qhadamw.QHAdamW(params, lr=0.001, betas=(0.995, 0.999), nus=(0.7, 1.0), weight_decay=0.0, eps=1e-08)[source]¶
- Bases: - torch.optim.optimizer.Optimizer- Implements QHAdam algorithm. - Combines QHAdam algorithm that was proposed in Quasi-hyperbolic momentum and Adam for deep learning with weight decay decoupling from Decoupled Weight Decay Regularization paper. - Example - >>> optimizer = QHAdamW( ... model.parameters(), ... lr=3e-4, nus=(0.8, 1.0), betas=(0.99, 0.999)) >>> optimizer.zero_grad() >>> loss_fn(model(input), target).backward() >>> optimizer.step() - Adapted from: https://github.com/iprally/qhadamw-pytorch/blob/master/qhadamw.py (MIT License) - 
__init__(params, lr=0.001, betas=(0.995, 0.999), nus=(0.7, 1.0), weight_decay=0.0, eps=1e-08)[source]¶
- Parameters
- params (iterable) – iterable of parameters to optimize or dicts defining parameter groups 
- lr (float, optional) – learning rate (\(\alpha\) from the paper) (default: 1e-3) 
- betas (Tuple[float, float], optional) – coefficients used for computing running averages of the gradient and its square (default: (0.995, 0.999)) 
- nus (Tuple[float, float], optional) – immediate discount factors used to estimate the gradient and its square (default: (0.7, 1.0)) 
- eps (float, optional) – term added to the denominator to improve numerical stability (default: 1e-8) 
- weight_decay (float, optional) – weight decay (L2 regularization coefficient, times two) (default: 0.0) 
 
 
 
- 
RAdam¶
- 
class catalyst.contrib.nn.optimizers.radam.RAdam(params, lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0)[source]¶
- Bases: - torch.optim.optimizer.Optimizer- Implements RAdam algorithm. - It has been proposed in On the Variance of the Adaptive Learning Rate and Beyond. - @TODO: Docs (add Example). Contribution is welcome - Adapted from: https://github.com/LiyuanLucasLiu/RAdam (Apache-2.0 License) 
Ralamb¶
- 
class catalyst.contrib.nn.optimizers.ralamb.Ralamb(params: Iterable, lr: float = 0.001, betas: Tuple[float, float] = (0.9, 0.999), eps: float = 1e-08, weight_decay: float = 0)[source]¶
- Bases: - torch.optim.optimizer.Optimizer- RAdam optimizer with LARS/LAMB tricks. - Adapted from: https://github.com/mgrankin/over9000/blob/master/ralamb.py (Apache-2.0 License) - 
__init__(params: Iterable, lr: float = 0.001, betas: Tuple[float, float] = (0.9, 0.999), eps: float = 1e-08, weight_decay: float = 0)[source]¶
- Parameters
- params – iterable of parameters to optimize or dicts defining parameter groups 
- lr (float, optional) – learning rate (default: 1e-3) 
- betas (Tuple[float, float], optional) – coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999)) 
- eps (float, optional) – term added to the denominator to improve numerical stability (default: 1e-8) 
- weight_decay (float, optional) – weight decay (L2 penalty) (default: 0) 
 
 
 
- 
SGDP¶
AdamP Copyright (c) 2020-present NAVER Corp. MIT license
Original source code: https://github.com/clovaai/AdamP
- 
class catalyst.contrib.nn.optimizers.sgdp.SGDP(params, lr=<required parameter>, momentum=0, weight_decay=0, dampening=0, nesterov=False, eps=1e-08, delta=0.1, wd_ratio=0.1)[source]¶
- Bases: - torch.optim.optimizer.Optimizer- Implements SGDP algorithm. - The SGDP variant was proposed in Slowing Down the Weight Norm Increase in Momentum-based Optimizers. - Parameters
- params – iterable of parameters to optimize or dicts defining parameter groups 
- lr – learning rate 
- momentum (float, optional) – momentum factor (default: 0) 
- weight_decay (float, optional) – weight decay (L2 penalty) (default: 0) 
- dampening (float, optional) – dampening for momentum (default: 0) 
- nesterov (bool, optional) – enables Nesterov momentum (default: False) 
- eps (float, optional) – term added to the denominator to improve numerical stability (default: 1e-8) 
- delta – threshold that determines whether a set of parameters is scale invariant or not (default: 0.1) 
- wd_ratio – relative weight decay applied on scale-invariant parameters compared to that applied on scale-variant parameters (default: 0.1) 
 
 - 
__init__(params, lr=<required parameter>, momentum=0, weight_decay=0, dampening=0, nesterov=False, eps=1e-08, delta=0.1, wd_ratio=0.1)[source]¶
- Parameters
- params – iterable of parameters to optimize or dicts defining parameter groups 
- lr – learning rate 
- momentum (float, optional) – momentum factor (default: 0) 
- weight_decay (float, optional) – weight decay (L2 penalty) (default: 0) 
- dampening (float, optional) – dampening for momentum (default: 0) 
- nesterov (bool, optional) – enables Nesterov momentum (default: False) 
- eps (float, optional) – term added to the denominator to improve numerical stability (default: 1e-8) 
- delta – threshold that determines whether a set of parameters is scale invariant or not (default: 0.1) 
- wd_ratio – relative weight decay applied on scale-invariant parameters compared to that applied on scale-variant parameters (default: 0.1) 
 
 
 
Schedulers¶
- 
class catalyst.contrib.nn.schedulers.base.BaseScheduler(optimizer, last_epoch=-1, verbose=False)[source]¶
- Bases: - torch.optim.lr_scheduler._LRScheduler,- abc.ABC- Base class for all schedulers with momentum update. 
- 
class catalyst.contrib.nn.schedulers.base.BatchScheduler(optimizer, last_epoch=-1, verbose=False)[source]¶
- Bases: - catalyst.contrib.nn.schedulers.base.BaseScheduler,- abc.ABC- @TODO: Docs. Contribution is welcome. 
OneCycleLRWithWarmup¶
- 
class catalyst.contrib.nn.schedulers.onecycle.OneCycleLRWithWarmup(optimizer: torch.optim.optimizer.Optimizer, num_steps: int, lr_range=(1.0, 0.005), init_lr: float = None, warmup_steps: int = 0, warmup_fraction: float = None, decay_steps: int = 0, decay_fraction: float = None, momentum_range=(0.8, 0.99, 0.999), init_momentum: float = None)[source]¶
- Bases: - catalyst.contrib.nn.schedulers.base.BatchScheduler- OneCycle scheduler with warm-up & lr decay stages. - First stage increases lr from - init_lrto- max_lr, and called- warmup. Also it decreases momentum from- init_momentumto- min_momentum. Takes- warmup_stepssteps- Second is - annealingstage. Decrease lr from- max_lrto- min_lr, Increase momentum from- min_momentumto- max_momentum.- Third, optional, lr decay. - 
__init__(optimizer: torch.optim.optimizer.Optimizer, num_steps: int, lr_range=(1.0, 0.005), init_lr: float = None, warmup_steps: int = 0, warmup_fraction: float = None, decay_steps: int = 0, decay_fraction: float = None, momentum_range=(0.8, 0.99, 0.999), init_momentum: float = None)[source]¶
- Parameters
- optimizer – PyTorch optimizer 
- num_steps – total number of steps 
- lr_range – tuple with two or three elements (max_lr, min_lr, [final_lr]) 
- init_lr (float, optional) – initial lr 
- warmup_steps – count of steps for warm-up stage 
- warmup_fraction (float, optional) – fraction in [0; 1) to calculate number of warmup steps. Cannot be set together with - warmup_steps
- decay_steps – count of steps for lr decay stage 
- decay_fraction (float, optional) – fraction in [0; 1) to calculate number of decay steps. Cannot be set together with - decay_steps
- momentum_range – tuple with two or three elements (min_momentum, max_momentum, [final_momentum]) 
- init_momentum (float, optional) – initial momentum 
 
 
 - 
get_lr() → List[float][source]¶
- Function that returns the new lr for optimizer. - Returns
- calculated lr for every param groups 
- Return type
- List[float] 
 
 - 
get_momentum() → List[float][source]¶
- Function that returns the new momentum for optimizer. - Returns
- calculated momentum for every param groups 
- Return type
- List[float] 
 
 
- 
Models¶
Segmentation¶
Unet¶
- 
class catalyst.contrib.models.cv.segmentation.unet.Unet(num_classes: int = 1, in_channels: int = 3, num_channels: int = 32, num_blocks: int = 4, encoder_params: Dict = None, bridge_params: Dict = None, decoder_params: Dict = None, head_params: Dict = None, state_dict: Union[dict, str, pathlib.Path] = None)[source]¶
- Bases: - catalyst.contrib.models.cv.segmentation.core.UnetSpec- @TODO: Docs. Contribution is welcome. 
- 
class catalyst.contrib.models.cv.segmentation.unet.ResnetUnet(num_classes: int = 1, arch: str = 'resnet18', pretrained: bool = True, encoder_params: Dict = None, bridge_params: Dict = None, decoder_params: Dict = None, head_params: Dict = None, state_dict: Union[dict, str, pathlib.Path] = None)[source]¶
- Bases: - catalyst.contrib.models.cv.segmentation.core.ResnetUnetSpec- @TODO: Docs. Contribution is welcome. 
Linknet¶
- 
class catalyst.contrib.models.cv.segmentation.linknet.Linknet(num_classes: int = 1, in_channels: int = 3, num_channels: int = 32, num_blocks: int = 4, encoder_params: Dict = None, bridge_params: Dict = None, decoder_params: Dict = None, head_params: Dict = None, state_dict: Union[dict, str, pathlib.Path] = None)[source]¶
- Bases: - catalyst.contrib.models.cv.segmentation.core.UnetSpec- @TODO: Docs. Contribution is welcome. 
- 
class catalyst.contrib.models.cv.segmentation.linknet.ResnetLinknet(num_classes: int = 1, arch: str = 'resnet18', pretrained: bool = True, encoder_params: Dict = None, bridge_params: Dict = None, decoder_params: Dict = None, head_params: Dict = None, state_dict: Union[dict, str, pathlib.Path] = None)[source]¶
- Bases: - catalyst.contrib.models.cv.segmentation.core.ResnetUnetSpec- @TODO: Docs. Contribution is welcome. 
FPNnet¶
- 
class catalyst.contrib.models.cv.segmentation.fpn.FPNUnet(num_classes: int = 1, in_channels: int = 3, num_channels: int = 32, num_blocks: int = 4, encoder_params: Dict = None, bridge_params: Dict = None, decoder_params: Dict = None, head_params: Dict = None, state_dict: Union[dict, str, pathlib.Path] = None)[source]¶
- Bases: - catalyst.contrib.models.cv.segmentation.core.UnetSpec- @TODO: Docs. Contribution is welcome. 
- 
class catalyst.contrib.models.cv.segmentation.fpn.ResnetFPNUnet(num_classes: int = 1, arch: str = 'resnet18', pretrained: bool = True, encoder_params: Dict = None, bridge_params: Dict = None, decoder_params: Dict = None, head_params: Dict = None, state_dict: Union[dict, str, pathlib.Path] = None)[source]¶
- Bases: - catalyst.contrib.models.cv.segmentation.core.ResnetUnetSpec- @TODO: Docs. Contribution is welcome. 
PSPnet¶
- 
class catalyst.contrib.models.cv.segmentation.psp.PSPnet(num_classes: int = 1, in_channels: int = 3, num_channels: int = 32, num_blocks: int = 4, encoder_params: Dict = None, bridge_params: Dict = None, decoder_params: Dict = None, head_params: Dict = None, state_dict: Union[dict, str, pathlib.Path] = None)[source]¶
- Bases: - catalyst.contrib.models.cv.segmentation.core.UnetSpec- @TODO: Docs. Contribution is welcome. 
- 
class catalyst.contrib.models.cv.segmentation.psp.ResnetPSPnet(num_classes: int = 1, arch: str = 'resnet18', pretrained: bool = True, encoder_params: Dict = None, bridge_params: Dict = None, decoder_params: Dict = None, head_params: Dict = None, state_dict: Union[dict, str, pathlib.Path] = None)[source]¶
- Bases: - catalyst.contrib.models.cv.segmentation.core.ResnetUnetSpec- @TODO: Docs. Contribution is welcome.