Data¶
Data subpackage has data preprocessers and dataloader abstractions.
Scripts¶
You can use scripts typing catalyst-data in your terminal. For example:
$ catalyst-data tag2label --help
Catalyst-data scripts.
Examples
1. process-images reads raw data and outputs preprocessed resized images
$ catalyst-data process-images \\
    --in-dir /path/to/raw/data/ \\
    --out-dir=./data/dataset \\
    --num-workers=6 \\
    --max-size=224 \\
    --extension=png \\
    --clear-exif \\
    --grayscale \\
    --expand-dims
2. tag2label prepares a dataset to json like {“class_id”: class_column_from_dataset}
$ catalyst-data tag2label \\
    --in-dir=./data/dataset \\
    --out-dataset=./data/dataset_raw.csv \\
    --out-labeling=./data/tag2cls.json
3. check-images checks images in your data to be non-broken and writes a flag: true if image opened without an error and false otherwise
$ catalyst-data check-images \\
    --in-csv=./data/dataset_raw.csv \\
    --img-rootpath=./data/dataset \\
    --img-col="tag" \\
    --out-csv=./data/dataset_checked.csv \\
    --n-cpu=4
- split-dataframe split your dataset into train/valid folds 
$ catalyst-data split-dataframe \\
    --in-csv=./data/dataset_raw.csv \\
    --tag2class=./data/tag2cls.json \\
    --tag-column=tag \\
    --class-column=class \\
    --n-folds=5 \\
    --train-folds=0,1,2,3 \\
    --out-csv=./data/dataset.csv
5. image2embedding embeds images from your csv or image directory with specified neural net architecture
$ catalyst-data image2embedding \\
    --in-csv=./data/input.csv \\
    --img-col="filename" \\
    --img-size=64 \\
    --out-npy=./embeddings.npy \\
    --arch=resnet34 \\
    --pooling=GlobalMaxPool2d \\
    --batch-size=8 \\
    --num-workers=16 \\
    --verbose
Augmentors¶
Augmentor¶
- 
class catalyst.data.augmentor.Augmentor(dict_key: str, augment_fn: Callable, input_key: str = None, output_key: str = None, **kwargs)[source]¶
- Augmentation abstraction to use with data dictionaries. - 
__init__(dict_key: str, augment_fn: Callable, input_key: str = None, output_key: str = None, **kwargs)[source]¶
- Augmentation abstraction to use with data dictionaries. - Parameters
- dict_key – key to transform 
- augment_fn – augmentation function to use 
- input_key – - augment_fninput key
- output_key – - augment_fnoutput key
- **kwargs – default kwargs for augmentations function 
 
 
 
- 
AugmentorKeys¶
Collate Functions¶
FilteringCollateFn¶
Dataset¶
PyTorch Extensions¶
DatasetFromSampler¶
- 
class catalyst.data.dataset.torch.DatasetFromSampler(sampler: torch.utils.data.sampler.Sampler)[source]¶
- Bases: - torch.utils.data.dataset.Dataset- Dataset to create indexes from Sampler. - Parameters
- sampler – PyTorch sampler 
 
ListDataset¶
- 
class catalyst.data.dataset.torch.ListDataset(list_data: List[Dict], open_fn: Callable, dict_transform: Optional[Callable] = None)[source]¶
- Bases: - torch.utils.data.dataset.Dataset- General purpose dataset class with several data sources list_data. - 
__getitem__(index: int) → Any[source]¶
- Gets element of the dataset. - Parameters
- index – index of the element in the dataset 
- Returns
- Single element by index 
 
 - 
__init__(list_data: List[Dict], open_fn: Callable, dict_transform: Optional[Callable] = None)[source]¶
- Parameters
- list_data – list of dicts, that stores you data annotations, (for example path to images, labels, bboxes, etc.) 
- open_fn – function, that can open your annotations dict and transfer it to data, needed by your network (for example open image by path, or tokenize read string.) 
- dict_transform – transforms to use on dict. (for example normalize image, add blur, crop/resize/etc) 
 
 
 
- 
MergeDataset¶
- 
class catalyst.data.dataset.torch.MergeDataset(*datasets: torch.utils.data.dataset.Dataset, dict_transform: Optional[Callable] = None)[source]¶
- Bases: - torch.utils.data.dataset.Dataset- Abstraction to merge several datasets into one dataset. - 
__getitem__(index: int) → Any[source]¶
- Get item from all datasets. - Parameters
- index – index to value from all datasets 
- Returns
- list of value in every dataset 
- Return type
- list 
 
 
- 
NumpyDataset¶
- 
class catalyst.data.dataset.torch.NumpyDataset(numpy_data: numpy.ndarray, numpy_key: str = 'features', dict_transform: Optional[Callable] = None)[source]¶
- Bases: - torch.utils.data.dataset.Dataset- General purpose dataset class to use with numpy_data. - 
__getitem__(index: int) → Any[source]¶
- Gets element of the dataset. - Parameters
- index – index of the element in the dataset 
- Returns
- Single element by index 
 
 - 
__init__(numpy_data: numpy.ndarray, numpy_key: str = 'features', dict_transform: Optional[Callable] = None)[source]¶
- General purpose dataset class to use with numpy_data. - Parameters
- numpy_data – numpy data (for example path to embeddings, features, etc.) 
- numpy_key – key to use for output dictionary 
- dict_transform – transforms to use on dict. (for example normalize vector, etc) 
 
 
 
- 
PathsDataset¶
- 
class catalyst.data.dataset.torch.PathsDataset(filenames: List[Union[str, pathlib.Path]], open_fn: Callable[[dict], dict], label_fn: Callable[[Union[str, pathlib.Path]], Any], features_key: str = 'features', target_key: str = 'targets', **list_dataset_params)[source]¶
- Bases: - catalyst.data.dataset.torch.ListDataset- Dataset that derives features and targets from samples filesystem paths. - Examples - >>> label_fn = lambda x: x.split("_")[0] >>> dataset = PathsDataset( >>> filenames=Path("/path/to/images/").glob("*.jpg"), >>> label_fn=label_fn, >>> open_fn=open_fn, >>> ) - 
__init__(filenames: List[Union[str, pathlib.Path]], open_fn: Callable[[dict], dict], label_fn: Callable[[Union[str, pathlib.Path]], Any], features_key: str = 'features', target_key: str = 'targets', **list_dataset_params)[source]¶
- Parameters
- filenames – list of file paths that store information about your dataset samples; it could be images, texts or any other files in general. 
- open_fn – function, that can open your annotations dict and transfer it to data, needed by your network (for example open image by path, or tokenize read string) 
- label_fn – function, that can extract target value from sample path (for example, your sample could be an image file like - /path/to/your/image_1.pngwhere the target is encoded as a part of file path)
- features_key – key to use to store sample features 
- target_key – key to use to store target label 
- list_dataset_params – base class initialization parameters. 
 
 
 
- 
Metric Learning Datasets¶
MetricLearningTrainDataset¶
QueryGalleryDataset¶
- 
class catalyst.data.dataset.metric_learning.QueryGalleryDataset[source]¶
- Bases: - torch.utils.data.dataset.Dataset,- abc.ABC- QueryGallleryDataset for CMCScoreCallback - 
abstract __getitem__(item) → Dict[str, torch.Tensor][source]¶
- Dataset for query/gallery split should return dict with feature, targets and is_query key. Value by key is_query should be boolean and indicate whether current object is in query or in gallery. - Raises
- NotImplementedError – You should implement it # noqa: DAR402 
 
 - 
abstract property gallery_size¶
- Query/Gallery dataset should have property gallery size. - Returns
- DAR202 
- Return type
- gallery size # noqa 
- Raises
- NotImplementedError – You should implement it # noqa: DAR402 
 
 - 
abstract property query_size¶
- Query/Gallery dataset should have property query size. - Returns
- DAR202 
- Return type
- query size # noqa 
- Raises
- NotImplementedError – You should implement it # noqa: DAR402 
 
 
- 
abstract 
In-batch Samplers¶
IInbatchTripletSampler¶
- 
class catalyst.data.IInbatchTripletSampler[source]¶
- An abstraction of inbatch triplet sampler. - 
abstract sample(features: torch.Tensor, labels: Union[List[int], torch.Tensor]) → Tuple[torch.Tensor, torch.Tensor, torch.Tensor][source]¶
- This method includes the logic of sampling/selecting triplets. - Parameters
- features – tensor of features 
- labels – labels of the samples in the batch, list or Tensor of shape (batch_size;) 
 
 - Returns: the batch of triplets - Raises
- NotImplementedError – you should implement it 
 
 
- 
abstract 
InBatchTripletsSampler¶
- 
class catalyst.data.InBatchTripletsSampler[source]¶
- Base class for a triplets samplers. We expect that the child instances of this class will be used to forming triplets inside the batches. (Note. It is assumed that set of output features is a subset of samples features inside the batch.) The batches must contain at least 2 samples for each class and at least 2 different classes, such behaviour can be garantee via using catalyst.data.sampler.BalanceBatchSampler - But you are not limited to using it in any other way. - 
sample(features: torch.Tensor, labels: Union[List[int], torch.Tensor]) → Tuple[torch.Tensor, torch.Tensor, torch.Tensor][source]¶
- Parameters
- features – has the shape of [batch_size, feature_size] 
- labels – labels of the samples in the batch 
 
- Returns
- (anchor, positive, negative) 
- Return type
- the batch of the triplets in the order below 
 
 
- 
AllTripletsSampler¶
HardTripletsSampler¶
- 
class catalyst.data.HardTripletsSampler(norm_required: bool = False)[source]¶
- This sampler selects hardest triplets based on distances between features: the hardest positive sample has the maximal distance to the anchor sample, the hardest negative sample has the minimal distance to the anchor sample. - Note that a typical triplet loss chart is as follows: 1. Falling: loss decreases to a value equal to the margin. 2. Long plato: the loss oscillates near the margin. 3. Falling: loss decreases to zero. 
HardClusterSampler¶
- 
class catalyst.data.HardClusterSampler[source]¶
- This sampler selects hardest triplets based on distance to mean vectors: anchor is a mean vector of features of i-th class in the batch, the hardest positive sample is the most distant from anchor sample of anchor’s class, the hardest negative sample is the closest mean vector of another classes. - The batch must contain k samples for p classes in it (k > 1, p > 1). - 
sample(features: torch.Tensor, labels: Union[List[int], torch.Tensor]) → Tuple[torch.Tensor, torch.Tensor, torch.Tensor][source]¶
- This method samples the hardest triplets in the batch. - Parameters
- features – tensor of shape (batch_size; embed_dim) that contains k samples for each of p classes 
- labels – labels of the batch, list or tensor of size (batch_size,) 
 
- Returns
- p triplets of (mean_vector, positive, negative_mean_vector) 
 
 
- 
Loader¶
BatchLimitLoaderWrapper¶
- 
class catalyst.data.loader.BatchLimitLoaderWrapper(loader: torch.utils.data.dataloader.DataLoader, num_batches: Union[int, float])[source]¶
- Loader wrapper. Limits number of batches used per each iteration. - For example, if you have some loader and want to use only first 5 bathes: - import torch from torch.utils.data import DataLoader, TensorDataset from catalyst.data.loader import BatchLimitLoaderWrapper num_samples, num_features = int(1e4), int(1e1) X, y = torch.rand(num_samples, num_features), torch.rand(num_samples) dataset = TensorDataset(X, y) loader = DataLoader(dataset, batch_size=32, num_workers=1) loader = BatchLimitLoaderWrapper(loader, num_batches=5) - or if you would like to use only some portion of Dataloader (we use 30% in the example below): - import torch from torch.utils.data import DataLoader, TensorDataset from catalyst.data.loader import BatchLimitLoaderWrapper num_samples, num_features = int(1e4), int(1e1) X, y = torch.rand(num_samples, num_features), torch.rand(num_samples) dataset = TensorDataset(X, y) loader = DataLoader(dataset, batch_size=32, num_workers=1) loader = BatchLimitLoaderWrapper(loader, num_batches=0.3) - Note - Generally speaking, this wrapper could be used with any iterator-like object. No - DataLoader-specific code used.- 
__init__(loader: torch.utils.data.dataloader.DataLoader, num_batches: Union[int, float])[source]¶
- Loader wrapper. Limits number of batches used per each iteration. - Parameters
- loader – torch dataloader. 
- num_batches (Union[int, float]) – number of batches to use (int), or portion of iterator (float, should be in [0;1] range) 
 
 
 
- 
Readers¶
Readers are the abstraction for your dataset. They can open an elem from the dataset and transform it to data, needed by your network. For example open image by path, or read string and tokenize it.
ReaderSpec¶
- 
class catalyst.data.reader.ReaderSpec(input_key: str, output_key: str)[source]¶
- Reader abstraction for all Readers. - Applies a function to an element of your data. For example to a row from csv, or to an image, etc. - All inherited classes have to implement __call__. 
ScalarReader¶
- 
class catalyst.data.reader.ScalarReader(input_key: str, output_key: Optional[str] = None, dtype: Type = <class 'numpy.float32'>, default_value: float = None, one_hot_classes: int = None, smoothing: float = None)[source]¶
- Numeric data reader abstraction. Reads a single float, int, str or other from data - 
__call__(element)[source]¶
- Reads a row from your annotations dict and transfer it to a single value - Parameters
- element – elem in your dataset 
- Returns
- Scalar value 
- Return type
- dtype 
 
 - 
__init__(input_key: str, output_key: Optional[str] = None, dtype: Type = <class 'numpy.float32'>, default_value: float = None, one_hot_classes: int = None, smoothing: float = None)[source]¶
- Parameters
- input_key – input key to use from annotation dict 
- output_key – output key to use to store the result, default: - input_key
- dtype – datatype of scalar values to use 
- default_value – default value to use if something goes wrong 
- one_hot_classes – number of one-hot classes 
- smoothing (float, optional) – if specified applies label smoothing to one_hot classes 
 
 
 
- 
LambdaReader¶
- 
class catalyst.data.reader.LambdaReader(input_key: str, output_key: Optional[str] = None, lambda_fn: Optional[Callable] = None, **kwargs)[source]¶
- Reader abstraction with an lambda encoders. Can read an elem from dataset and apply encode_fn function to it. - 
__call__(element)[source]¶
- Reads a row from your annotations dict and applies encode_fn function. - Parameters
- element – elem in your dataset. 
- Returns
- Value after applying lambda_fn function 
 
 - 
__init__(input_key: str, output_key: Optional[str] = None, lambda_fn: Optional[Callable] = None, **kwargs)[source]¶
- Parameters
- input_key – input key to use from annotation dict 
- output_key – output key to use to store the result 
- lambda_fn – encode function to use to prepare your data (for example convert chars/words/tokens to indices, etc) 
- kwargs – kwargs for encode function 
 
 
 
- 
ReaderCompose¶
- 
class catalyst.data.reader.ReaderCompose(readers: List[catalyst.data.reader.ReaderSpec], mixins: list = None)[source]¶
- Abstraction to compose several readers into one open function. 
Samplers¶
BalanceBatchSampler¶
- 
class catalyst.data.sampler.BalanceBatchSampler(labels: Union[List[int], numpy.ndarray], p: int, k: int)[source]¶
- This kind of sampler can be used for both metric learning and classification task. - Sampler with the given strategy for the C unique classes dataset: - Selection P of C classes for the 1st batch - Selection K instances for each class for the 1st batch - Selection P of C - P remaining classes for 2nd batch - Selection K instances for each class for the 2nd batch - … The epoch ends when there are no classes left. So, the batch sise is P * K except the last one. - Thus, in each epoch, all the classes will be selected once, but this does not mean that all the instances will be selected during the epoch. - One of the purposes of this sampler is to be used for forming triplets and pos/neg pairs inside the batch. To guarante existance of these pairs in the batch, P and K should be > 1. (1) - Behavior in corner cases: - If a class does not contain K instances, a choice will be made with repetition. - If C % P == 1 then one of the classes should be dropped otherwise statement (1) will not be met. - This type of sampling can be found in the classical paper of Person Re-Id, where P equals 32 and K equals 4: In Defense of the Triplet Loss for Person Re-Identification. - Parameters
- labels – list of classes labeles for each elem in the dataset 
- p – number of classes in a batch, should be > 1 
- k – number of instances of each class in a batch, should be > 1 
 
 - 
property batch_size¶
- Returns: this value should be used in DataLoader as batch size 
 - 
property batches_in_epoch¶
- Returns: number of batches in an epoch 
 
BalanceClassSampler¶
- 
class catalyst.data.sampler.BalanceClassSampler(labels: List[int], mode: Union[str, int] = 'downsampling')[source]¶
- Allows you to create stratified sample on unbalanced classes. - Parameters
- labels – list of class label for each elem in the dataset 
- mode – Strategy to balance classes. Must be one of [downsampling, upsampling] 
 
 
DistributedSamplerWrapper¶
- 
class catalyst.data.sampler.DistributedSamplerWrapper(sampler, num_replicas: Optional[int] = None, rank: Optional[int] = None, shuffle: bool = True)[source]¶
- Wrapper over Sampler for distributed training. Allows you to use any sampler in distributed mode. - It is especially useful in conjunction with torch.nn.parallel.DistributedDataParallel. In such case, each process can pass a DistributedSamplerWrapper instance as a DataLoader sampler, and load a subset of subsampled data of the original dataset that is exclusive to it. - Note - Sampler is assumed to be of constant size. - 
__init__(sampler, num_replicas: Optional[int] = None, rank: Optional[int] = None, shuffle: bool = True)[source]¶
- Parameters
- sampler – Sampler used for subsampling 
- num_replicas (int, optional) – Number of processes participating in distributed training 
- rank (int, optional) – Rank of the current process within - num_replicas
- shuffle (bool, optional) – If true (default), sampler will shuffle the indices 
 
 
 
- 
DynamicBalanceClassSampler¶
- 
class catalyst.data.sampler.DynamicBalanceClassSampler(labels: List[Union[int, str]], exp_lambda: float = 0.9, start_epoch: int = 0, max_d: Optional[int] = None, mode: Union[str, int] = 'downsampling', ignore_warning: bool = False)[source]¶
- This kind of sampler can be used for classification tasks with significant class imbalance. - The idea of this sampler that we start with the original class distribution and gradually move to uniform class distribution like with downsampling. - Let’s define :math: D_i = #C_i/ #C_min where :math: #C_i is a size of class i and :math: #C_min is a size of the rarest class, so :math: D_i define class distribution. Also define :math: g(n_epoch) is a exponential scheduler. On each epoch current :math: D_i calculated as :math: current D_i = D_i ^ g(n_epoch), after this data samples according this distribution. - Notes - In the end of the training, epochs will contain only min_size_class * n_classes examples. So, possible it will not necessary to do validation on each epoch. For this reason use ControlFlowCallback. - Examples - >>> import torch >>> import numpy as np - >>> from catalyst.data import DynamicBalanceClassSampler >>> from torch.utils import data - >>> features = torch.Tensor(np.random.random((200, 100))) >>> labels = np.random.randint(0, 4, size=(200,)) >>> sampler = DynamicBalanceClassSampler(labels) >>> labels = torch.LongTensor(labels) >>> dataset = data.TensorDataset(features, labels) >>> loader = data.dataloader.DataLoader(dataset, batch_size=8) - >>> for batch in loader: >>> b_features, b_labels = batch - Sampler was inspired by https://arxiv.org/abs/1901.06783 - 
__init__(labels: List[Union[int, str]], exp_lambda: float = 0.9, start_epoch: int = 0, max_d: Optional[int] = None, mode: Union[str, int] = 'downsampling', ignore_warning: bool = False)[source]¶
- Parameters
- labels – list of labels for each elem in the dataset 
- exp_lambda – exponent figure for schedule 
- start_epoch – start epoch number, can be useful for multi-stage 
- experiments – 
- max_d – if not None, limit on the difference between the most 
- and the rarest classes, heuristic (frequent) – 
- mode – number of samples per class in the end of training. Must be 
- or number. Before change it, make sure that you ("downsampling") – 
- how does it work (understand) – 
- ignore_warning – ignore warning about min class size 
 
 
 
- 
DynamicLenBatchSampler¶
- 
class catalyst.data.sampler.DynamicLenBatchSampler(sampler: torch.utils.data.sampler.Sampler[int][int], batch_size: int, drop_last: bool)[source]¶
- A dynamic batch length data sampler. Should be used with catalyst.utils.trim_tensors. - Adapted from Dynamic minibatch trimming to improve BERT training speed. - Parameters
- sampler – Base sampler. 
- batch_size – Size of minibatch. 
- drop_last – If - True, the sampler will drop the last batch
- its size would be less than batch_size. (if) – 
 
 - Usage example: - >>> from torch.utils import data >>> from catalyst.data import DynamicLenBatchSampler >>> from catalyst import utils - >>> dataset = data.TensorDataset( >>> input_ids, input_mask, segment_ids, labels >>> ) - >>> sampler_ = data.RandomSampler(dataset) >>> sampler = DynamicLenBatchSampler( >>> sampler_, batch_size=16, drop_last=False >>> ) >>> loader = data.DataLoader(dataset, batch_sampler=sampler) - >>> for batch in loader: >>> tensors = utils.trim_tensors(batch) >>> b_input_ids, b_input_mask, b_segment_ids, b_labels = >>> tuple(t.to(device) for t in tensors) 
MiniEpochSampler¶
- 
class catalyst.data.sampler.MiniEpochSampler(data_len: int, mini_epoch_len: int, drop_last: bool = False, shuffle: str = None)[source]¶
- Sampler iterates mini epochs from the dataset used by - mini_epoch_len.- Parameters
- data_len – Size of the dataset 
- mini_epoch_len – Num samples from the dataset used in one mini epoch. 
- drop_last – If - True, sampler will drop the last batches if its size would be less than- batches_per_epoch
- shuffle – one of - "always",- "real_epoch", or None`. The sampler will shuffle indices > “per_mini_epoch” - every mini epoch (every- __iter__call) > “per_epoch” – every real epoch > None – don’t shuffle
 
 - Example - >>> MiniEpochSampler(len(dataset), mini_epoch_len=100) >>> MiniEpochSampler(len(dataset), mini_epoch_len=100, drop_last=True) >>> MiniEpochSampler(len(dataset), mini_epoch_len=100, >>> shuffle="per_epoch") 
Computer Vision Extensions¶
Dataset¶
ImageFolderDataset¶
- 
class catalyst.data.cv.dataset.ImageFolderDataset(rootpath: str, target_key: str = 'targets', dir2class: Optional[Mapping[str, int]] = None, dict_transform: Optional[Callable[[Dict], Dict]] = None)[source]¶
- Bases: - catalyst.data.dataset.torch.PathsDataset- Dataset class that derives targets from samples filesystem paths. Dataset structure should be the following: - rootpat/ |-- class1/ # folder of N images | |-- image11 | |-- image12 | ... | `-- image1N ... `-- classM/ # folder of K images |-- imageM1 |-- imageM2 ... `-- imageMK - 
__init__(rootpath: str, target_key: str = 'targets', dir2class: Optional[Mapping[str, int]] = None, dict_transform: Optional[Callable[[Dict], Dict]] = None) → None[source]¶
- Constructor method for the - ImageFolderDatasetclass.- Parameters
- rootpath – root directory of dataset 
- target_key – key to use to store target label 
- dir2class (Mapping[str, int], optional) – mapping from folder name to class index 
- dict_transform (Callable[[Dict], Dict]], optional) – transforms to use on dict 
 
 
 
- 
Mixins¶
BlurMixin¶
FlareMixin¶
RotateMixin¶
- 
class catalyst.data.cv.mixins.rotate.RotateMixin(input_key: str = 'image', output_key: str = 'rotation_factor', targets_key: str = None, rotate_probability: float = 1.0, hflip_probability: float = 0.5, one_hot_classes: int = None)[source]¶
- Bases: - object- Calculates rotation factor for augmented image. - 
__init__(input_key: str = 'image', output_key: str = 'rotation_factor', targets_key: str = None, rotate_probability: float = 1.0, hflip_probability: float = 0.5, one_hot_classes: int = None)[source]¶
- Parameters
- input_key – input key to use from annotation dict 
- output_key – output key to use to store the result 
 
 
 
- 
Readers¶
ImageReader¶
- 
class catalyst.data.cv.reader.ImageReader(input_key: str, output_key: Optional[str] = None, rootpath: Optional[str] = None, grayscale: bool = False)[source]¶
- Bases: - catalyst.data.reader.ReaderSpec- Image reader abstraction. Reads images from a - csvdataset.- 
__init__(input_key: str, output_key: Optional[str] = None, rootpath: Optional[str] = None, grayscale: bool = False)[source]¶
- Parameters
- input_key – key to use from annotation dict 
- output_key – key to use to store the result, default: - input_key
- rootpath – path to images dataset root directory (so your can use relative paths in annotations) 
- grayscale – flag if you need to work only with grayscale images 
 
 
 
- 
MaskReader¶
- 
class catalyst.data.cv.reader.MaskReader(input_key: str, output_key: Optional[str] = None, rootpath: Optional[str] = None, clip_range: Tuple[Union[int, float], Union[int, float]] = (0, 1))[source]¶
- Bases: - catalyst.data.reader.ReaderSpec- Mask reader abstraction. Reads masks from a csv dataset. - 
__init__(input_key: str, output_key: Optional[str] = None, rootpath: Optional[str] = None, clip_range: Tuple[Union[int, float], Union[int, float]] = (0, 1))[source]¶
- Parameters
- input_key – key to use from annotation dict 
- output_key – key to use to store the result, default: - input_key
- rootpath – path to images dataset root directory (so your can use relative paths in annotations) 
- clip_range (Tuple[int, int]) – lower and upper interval edges, image values outside the interval are clipped to the interval edges 
 
 
 
- 
Transforms¶
TensorToImage¶
- 
class catalyst.data.cv.transforms.albumentations.TensorToImage(denormalize: bool = False, move_channels_dim: bool = True, always_apply: bool = False, p: float = 1.0)[source]¶
- Bases: - albumentations.core.transforms_interface.ImageOnlyTransform- Casts - torch.tensorto- numpy.array.- 
__init__(denormalize: bool = False, move_channels_dim: bool = True, always_apply: bool = False, p: float = 1.0)[source]¶
- Parameters
- denormalize – if True, multiply image(s) by ImageNet std and add ImageNet mean 
- move_channels_dim – if True, convert [B]xCxHxW tensor to [B]xHxWxC format 
- always_apply – need to apply this transform anyway 
- p – probability for this transform 
 
 
 
- 
ImageToTensor¶
- 
class catalyst.data.cv.transforms.albumentations.ImageToTensor(move_channels_dim: bool = True, always_apply: bool = False, p: float = 1.0)[source]¶
- Bases: - albumentations.pytorch.transforms.ToTensorV2- Casts - numpy.arrayto- torch.tensor.- 
__init__(move_channels_dim: bool = True, always_apply: bool = False, p: float = 1.0)[source]¶
- Parameters
- move_channels_dim – if - False, casts numpy array to- torch.tensor, but do not move channels dim
- always_apply – need to apply this transform anyway 
- p – probability for this transform 
 
 
 
- 
Normalize¶
- 
class catalyst.data.cv.transforms.torch.Normalize(mean, std, inplace=False)[source]¶
- Bases: - object- Normalize a tensor image with mean and standard deviation. - Given mean: - (mean[1],...,mean[n])and std:- (std[1],..,std[n])for- nchannels, this transform will normalize each channel of the input- torch.*Tensori.e.,- output[channel] = (input[channel] - mean[channel]) / std[channel]- Note - This transform acts out of place, i.e.,
- it does not mutate the input tensor. 
 
ToTensor¶
- 
class catalyst.data.cv.transforms.torch.ToTensor[source]¶
- Bases: - object- Convert a - numpy.ndarrayto tensor. Converts numpy.ndarray (H x W x C) in the range [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0] if the numpy.ndarray has dtype = np.uint8 In the other cases, tensors are returned without scaling.
OneOfPerBatch¶
- 
class catalyst.data.cv.transforms.kornia.OneOfPerBatch(transforms: Iterable[Union[kornia.augmentation.base.AugmentationBase2D, kornia.augmentation.base.AugmentationBase3D]])[source]¶
- Bases: - torch.nn.modules.module.Module- Select one of tensor transforms and apply it batch-wise. - 
__init__(transforms: Iterable[Union[kornia.augmentation.base.AugmentationBase2D, kornia.augmentation.base.AugmentationBase3D]]) → None[source]¶
- Constructor method for the - OneOfPerBatchtransform.- Parameters
- transforms – list of kornia transformations to compose. Actually, any - nn.Modulewith defined- p``(probability of selecting transform) and ``p_batchattributes is allowed.
 
 - 
forward(input: Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]], params: Optional[Dict[str, torch.Tensor]] = None, return_transform: Optional[bool] = None) → Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]][source]¶
- Apply transform. - Parameters
- input – input batch 
- params – transform params, please check kornia documentation 
- return_transform – if - Truereturn the matrix describing the geometric transformation applied to each input tensor, please check kornia documentation
 
- Returns
- augmented batch and, optionally, the transformation matrix 
 
 
- 
OneOfPerSample¶
- 
class catalyst.data.cv.transforms.kornia.OneOfPerSample(transforms: Iterable[Union[kornia.augmentation.base.AugmentationBase2D, kornia.augmentation.base.AugmentationBase3D]])[source]¶
- Bases: - torch.nn.modules.module.Module- Select one of tensor transforms to apply sample-wise. - 
__init__(transforms: Iterable[Union[kornia.augmentation.base.AugmentationBase2D, kornia.augmentation.base.AugmentationBase3D]]) → None[source]¶
- Constructor method for the - OneOfPerSampletransform.- Parameters
- transforms – list of kornia transformations to compose. Actually, any - nn.Modulewith defined- p``(probability of selecting transform) and ``p_batchattributes is allowed.
 
 - 
forward(input: Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]], params: Optional[Dict[str, torch.Tensor]] = None, return_transform: Optional[bool] = None) → Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]][source]¶
- Apply transform. - Parameters
- input – input batch 
- params – transform params, please check kornia documentation 
- return_transform – if - Truereturn the matrix describing the geometric transformation applied to each input tensor, please check kornia documentation
 
- Returns
- augmented batch and, optionally, the transformation matrix 
 
 
- 
Natural Language Processing Extensions¶
Datasets¶
LanguageModelingDataset¶
- 
class catalyst.data.nlp.dataset.language_modeling.LanguageModelingDataset(texts: Iterable[str], tokenizer: Union[str, transformers.tokenization_utils.PreTrainedTokenizer], max_seq_length: int = None, sort: bool = True, lazy: bool = False)[source]¶
- Bases: - torch.utils.data.dataset.Dataset- Dataset for (masked) language model task. Can sort sequnces for efficient padding. - 
__init__(texts: Iterable[str], tokenizer: Union[str, transformers.tokenization_utils.PreTrainedTokenizer], max_seq_length: int = None, sort: bool = True, lazy: bool = False)[source]¶
- Parameters
- texts – Iterable object with text 
- tokenizer (str or tokenizer) – pre trained huggingface tokenizer or model name 
- max_seq_length – max sequence length to tokenize 
- sort – If True then sort all sequences by length for efficient padding 
- lazy – If True then tokenize and encode sequence in __getitem__ method else will tokenize in __init__ also if set to true sorting is unavialible 
 
 
 
- 
TextClassificationDataset¶
- 
class catalyst.data.nlp.dataset.text_classification.TextClassificationDataset(texts: List[str], labels: List[str] = None, label_dict: Mapping[str, int] = None, max_seq_length: int = 512, model_name: str = 'distilbert-base-uncased')[source]¶
- Bases: - torch.utils.data.dataset.Dataset- Wrapper around Torch Dataset to perform text classification. - 
__init__(texts: List[str], labels: List[str] = None, label_dict: Mapping[str, int] = None, max_seq_length: int = 512, model_name: str = 'distilbert-base-uncased')[source]¶
- Parameters
- texts – a list with texts to classify or to train the classifier on 
- List[str] (labels) – a list with classification labels (optional) 
- label_dict – a dictionary mapping class names to class ids, to be passed to the validation data (optional) 
- max_seq_length – maximal sequence length in tokens, texts will be stripped to this length 
- model_name – transformer model name, needed to perform appropriate tokenization 
 
 
 
-