Source code for catalyst.contrib.nn.optimizers.radam
from typing import Callable, Optional
import math
import torch
from torch.optim.optimizer import Optimizer
[docs]class RAdam(Optimizer):
"""Implements RAdam algorithm.
It has been proposed in `On the Variance of the Adaptive Learning Rate
and Beyond`_.
@TODO: Docs (add `Example`). Contribution is welcome
Adapted from:
https://github.com/LiyuanLucasLiu/RAdam (Apache-2.0 License)
.. _On the Variance of the Adaptive Learning Rate and Beyond:
https://arxiv.org/abs/1908.03265
"""
[docs] def __init__(
self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0
):
"""@TODO: Docs. Contribution is welcome."""
defaults = {
"lr": lr,
"betas": betas,
"eps": eps,
"weight_decay": weight_decay,
}
self.buffer = [[None, None, None] for _ in range(10)]
super(RAdam, self).__init__(params, defaults)
def __setstate__(self, state):
"""@TODO: Docs. Contribution is welcome."""
super(RAdam, self).__setstate__(state)
[docs] def step(self, closure: Optional[Callable] = None):
"""Makes optimizer step.
Args:
closure (callable, optional): A closure that reevaluates
the model and returns the loss.
Returns:
computed loss
Raises:
RuntimeError: RAdam does not support sparse gradients
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group["params"]:
if p.grad is None:
continue
grad = p.grad.data.float()
if grad.is_sparse:
raise RuntimeError(
"RAdam does not support sparse gradients"
)
p_data_fp32 = p.data.float()
state = self.state[p]
if len(state) == 0:
state["step"] = 0
state["exp_avg"] = torch.zeros_like(p_data_fp32)
state["exp_avg_sq"] = torch.zeros_like(p_data_fp32)
else:
state["exp_avg"] = state["exp_avg"].type_as(p_data_fp32)
state["exp_avg_sq"] = state["exp_avg_sq"].type_as(
p_data_fp32
)
exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"]
beta1, beta2 = group["betas"]
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
exp_avg.mul_(beta1).add_(1 - beta1, grad)
state["step"] += 1
buffered = self.buffer[int(state["step"] % 10)]
if state["step"] == buffered[0]:
n_sma, step_size = buffered[1], buffered[2]
else:
buffered[0] = state["step"]
beta2_t = beta2 ** state["step"]
n_sma_max = 2 / (1 - beta2) - 1
n_sma = n_sma_max - 2 * state["step"] * beta2_t / (
1 - beta2_t
)
buffered[1] = n_sma
# more conservative since it's an approximated value
if n_sma >= 5:
step_size = (
group["lr"]
* math.sqrt(
(1 - beta2_t)
* (n_sma - 4)
/ (n_sma_max - 4)
* (n_sma - 2)
/ n_sma
* n_sma_max
/ (n_sma_max - 2)
)
/ (1 - beta1 ** state["step"])
)
else:
step_size = group["lr"] / (1 - beta1 ** state["step"])
buffered[2] = step_size
if group["weight_decay"] != 0:
p_data_fp32.add_(
-group["weight_decay"] * group["lr"], p_data_fp32
)
# more conservative since it's an approximated value
if n_sma >= 5:
denom = exp_avg_sq.sqrt().add_(group["eps"])
p_data_fp32.addcdiv_(-step_size, exp_avg, denom)
else:
p_data_fp32.add_(-step_size, exp_avg)
p.data.copy_(p_data_fp32)
return loss
__all__ = ["RAdam"]