Source code for catalyst.contrib.nn.optimizers.sgdp
"""
AdamP
Copyright (c) 2020-present NAVER Corp.
MIT license
Original source code: https://github.com/clovaai/AdamP
"""
import math
import torch
import torch.nn.functional as F
from torch.optim.optimizer import Optimizer, required
[docs]class SGDP(Optimizer):
"""Implements SGDP algorithm.
The SGDP variant was proposed in
`Slowing Down the Weight Norm Increase in Momentum-based Optimizers`_.
Args:
params: iterable of parameters to optimize or dicts defining
parameter groups
lr: learning rate
momentum (float, optional): momentum factor (default: 0)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
dampening (float, optional): dampening for momentum (default: 0)
nesterov (bool, optional): enables Nesterov momentum (default: False)
eps (float, optional): term added to the denominator to improve
numerical stability (default: 1e-8)
delta: threshold that determines whether
a set of parameters is scale invariant or not (default: 0.1)
wd_ratio: relative weight decay applied on scale-invariant
parameters compared to that applied on scale-variant parameters
(default: 0.1)
.. _Slowing Down the Weight Norm Increase in Momentum-based Optimizers:
https://arxiv.org/abs/2006.08217
"""
[docs] def __init__(
self,
params,
lr=required,
momentum=0,
weight_decay=0,
dampening=0,
nesterov=False,
eps=1e-8,
delta=0.1,
wd_ratio=0.1,
):
"""
Args:
params: iterable of parameters to optimize
or dicts defining parameter groups
lr: learning rate
momentum (float, optional): momentum factor (default: 0)
weight_decay (float, optional): weight decay (L2 penalty)
(default: 0)
dampening (float, optional): dampening for momentum (default: 0)
nesterov (bool, optional): enables Nesterov momentum
(default: False)
eps (float, optional): term added to the denominator to improve
numerical stability (default: 1e-8)
delta: threshold that determines whether
a set of parameters is scale invariant or not (default: 0.1)
wd_ratio: relative weight decay applied on scale-invariant
parameters compared to that applied on scale-variant parameters
(default: 0.1)
"""
defaults = dict( # noqa: C408
lr=lr,
momentum=momentum,
dampening=dampening,
weight_decay=weight_decay,
nesterov=nesterov,
eps=eps,
delta=delta,
wd_ratio=wd_ratio,
)
super(SGDP, self).__init__(params, defaults)
def _channel_view(self, x):
return x.view(x.size(0), -1)
def _layer_view(self, x):
return x.view(1, -1)
def _cosine_similarity(self, x, y, eps, view_func):
x = view_func(x)
y = view_func(y)
return F.cosine_similarity(x, y, dim=1, eps=eps).abs_()
def _projection(self, p, grad, perturb, delta, wd_ratio, eps):
wd = 1
expand_size = [-1] + [1] * (len(p.shape) - 1)
for view_func in [self._channel_view, self._layer_view]:
cosine_sim = self._cosine_similarity(grad, p.data, eps, view_func)
if cosine_sim.max() < delta / math.sqrt(view_func(p.data).size(1)):
p_n = p.data / view_func(p.data).norm(dim=1).view(
expand_size
).add_(eps)
perturb -= p_n * view_func(p_n * perturb).sum(dim=1).view(
expand_size
)
wd = wd_ratio
return perturb, wd
return perturb, wd
[docs] def step(self, closure=None):
"""
Performs a single optimization step (parameter update).
Arguments:
closure: A closure that reevaluates the model and
returns the loss. Optional for most optimizers.
Returns:
computed loss
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
momentum = group["momentum"]
dampening = group["dampening"]
nesterov = group["nesterov"]
for p in group["params"]:
if p.grad is None:
continue
grad = p.grad.data
state = self.state[p]
# State initialization
if len(state) == 0:
state["momentum"] = torch.zeros_like(p.data)
# SGD
buf = state["momentum"]
buf.mul_(momentum).add_(grad, alpha=1 - dampening)
if nesterov:
d_p = grad + momentum * buf
else:
d_p = buf
# Projection
wd_ratio = 1
if len(p.shape) > 1:
d_p, wd_ratio = self._projection(
p,
grad,
d_p,
group["delta"],
group["wd_ratio"],
group["eps"],
)
# Weight decay
if group["weight_decay"] > 0:
p.data.mul_(
1
- group["lr"]
* group["weight_decay"]
* wd_ratio
/ (1 - momentum)
)
# Step
p.data.add_(d_p, alpha=-group["lr"])
return loss
__all__ = ["SGDP"]