Source code for catalyst.runners.supervised
from typing import Any, Callable, List, Mapping, Tuple, Union
import logging
import torch
from catalyst.experiments.auto import AutoCallbackExperiment
from catalyst.runners.runner import Runner
from catalyst.typing import Device, RunnerModel
logger = logging.getLogger(__name__)
[docs]class SupervisedRunner(Runner):
"""Runner for experiments with supervised model."""
[docs] def __init__(
self,
model: RunnerModel = None,
device: Device = None,
input_key: Any = "features",
output_key: Any = "logits",
input_target_key: str = "targets",
experiment_fn: Callable = AutoCallbackExperiment,
):
"""
Args:
model: Torch model object
device: Torch device
input_key: Key in batch dict mapping for model input
output_key: Key in output dict model output
will be stored under
input_target_key: Key in batch dict mapping for target
experiment_fn: callable function,
which defines default experiment type to use
during ``.train`` and ``.infer`` methods.
"""
super().__init__(
model=model, device=device, experiment_fn=experiment_fn
)
self.input_key = input_key
self.output_key = output_key
self.target_key = input_target_key
if isinstance(self.input_key, str):
# when model expects value
self._process_input = self._process_input_str
elif isinstance(self.input_key, (list, tuple)):
# when model expects tuple
self._process_input = self._process_input_list
elif self.input_key is None:
# when model expects dict
self._process_input = self._process_input_none
else:
raise NotImplementedError()
if isinstance(output_key, str):
# when model returns value
self._process_output = self._process_output_str
elif isinstance(output_key, (list, tuple)):
# when model returns tuple
self._process_output = self._process_output_list
elif self.output_key is None:
# when model returns dict
self._process_output = self._process_output_none
else:
raise NotImplementedError()
def _process_input_str(self, batch: Mapping[str, Any], **kwargs):
output = self.model(batch[self.input_key], **kwargs)
return output
def _process_input_list(self, batch: Mapping[str, Any], **kwargs):
input = {key: batch[key] for key in self.input_key} # noqa: WPS125
output = self.model(**input, **kwargs)
return output
def _process_input_none(self, batch: Mapping[str, Any], **kwargs):
output = self.model(**batch, **kwargs)
return output
def _process_output_str(self, output: torch.Tensor):
output = {self.output_key: output}
return output
def _process_output_list(self, output: Union[Tuple, List]):
output = {key: value for key, value in zip(self.output_key, output)}
return output
def _process_output_none(self, output: Mapping[str, Any]):
return output
[docs] def forward(self, batch: Mapping[str, Any], **kwargs) -> Mapping[str, Any]:
"""
Forward method for your Runner.
Should not be called directly outside of runner.
If your model has specific interface, override this method to use it
Args:
batch (Mapping[str, Any]): dictionary with data batches
from DataLoaders.
**kwargs: additional parameters to pass to the model
Returns:
dict with model output batch
"""
output = self._process_input(batch, **kwargs)
output = self._process_output(output)
return output
def _handle_device(self, batch: Mapping[str, Any]):
if isinstance(batch, (tuple, list)):
assert len(batch) == 2
batch = {self.input_key: batch[0], self.target_key: batch[1]}
batch = super()._handle_device(batch)
return batch
def _handle_batch(self, batch: Mapping[str, Any]) -> None:
"""
Inner method to handle specified data batch.
Used to make a train/valid/infer stage during Experiment run.
Args:
batch (Mapping[str, Any]): dictionary with data batches
from DataLoader.
"""
self.output = self.forward(batch)
[docs] @torch.no_grad()
def predict_batch(
self, batch: Mapping[str, Any], **kwargs
) -> Mapping[str, Any]:
"""
Run model inference on specified data batch.
.. warning::
You should not override this method. If you need specific model
call, override forward() method
Args:
batch (Mapping[str, Any]): dictionary with data batches
from DataLoader.
**kwargs: additional kwargs to pass to the model
Returns:
Mapping[str, Any]: model output dictionary
"""
batch = self._handle_device(batch)
output = self.forward(batch, **kwargs)
return output
__all__ = ["SupervisedRunner"]