Shortcuts

Source code for catalyst.callbacks.metrics.functional_metric

from typing import Callable, Dict, Iterable, Union

from catalyst.callbacks.metric import FunctionalBatchMetricCallback
from catalyst.metrics._functional_metric import FunctionalBatchMetric


[docs]class FunctionalMetricCallback(FunctionalBatchMetricCallback): """ Args: input_key: input key to use for metric calculation, specifies our `y_pred` target_key: output key to use for metric calculation, specifies our `y_true` metric_fn: metric function, that get outputs, targets and return score as torch.Tensor metric_key: key to store computed metric in ``runner.batch_metrics`` dictionary compute_on_call: Computes and returns metric value during metric call. Used for per-batch logging. default: True log_on_batch: boolean flag to log computed metrics every batch prefix: metric prefix suffix: metric suffix """
[docs] def __init__( self, input_key: Union[str, Iterable[str], Dict[str, str]], target_key: Union[str, Iterable[str], Dict[str, str]], metric_fn: Callable, metric_key: str, compute_on_call: bool = True, log_on_batch: bool = True, prefix: str = None, suffix: str = None, ): """Init.""" super().__init__( metric=FunctionalBatchMetric( metric_fn=metric_fn, metric_key=metric_key, compute_on_call=compute_on_call, prefix=prefix, suffix=suffix, ), input_key=input_key, target_key=target_key, log_on_batch=log_on_batch, )
__all__ = ["FunctionalMetricCallback"]