Callbacks¶
Run¶
BatchOverfitCallback¶
-
class
catalyst.callbacks.batch_overfit.
BatchOverfitCallback
(**kwargs)[source]¶ Bases:
catalyst.core.callback.Callback
Callback to overfit loaders with specified number of batches. By default we use
1
batch for loader.- Parameters
kwargs – loader names and their number of batches to overfit.
For example, if you have
train
,train_additional
,valid
andvalid_additional
loaders and wan’t to overfittrain
on first 1 batch,train_additional
on first 2 batches,valid
- on first 20% of batches andvalid_additional
- on 50% batches:from catalyst.dl import ( SupervisedRunner, BatchOverfitCallback, ) runner = SupervisedRunner() runner.train( ... loaders={ "train": ..., "train_additional": ..., "valid": ..., "valid_additional":... } ... callbacks=[ ... BatchOverfitCallback( train_additional=2, valid=0.2, valid_additional=0.5 ), ... ] ... )
Minimal working example
import torch from torch.utils.data import DataLoader, TensorDataset from catalyst import dl # data num_samples, num_features = int(1e4), int(1e1) X, y = torch.rand(num_samples, num_features), torch.rand(num_samples) dataset = TensorDataset(X, y) loader = DataLoader(dataset, batch_size=32, num_workers=1) loaders = {"train": loader, "valid": loader} # model, criterion, optimizer, scheduler model = torch.nn.Linear(num_features, 1) criterion = torch.nn.MSELoss() optimizer = torch.optim.Adam(model.parameters()) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [3, 6]) # model training runner = dl.SupervisedRunner() runner.train( model=model, criterion=criterion, optimizer=optimizer, scheduler=scheduler, loaders=loaders, logdir="./logdir", num_epochs=8, verbose=True, callbacks=[dl.BatchOverfitCallback(train=10, valid=0.5)] )
BatchTransformCallback¶
-
class
catalyst.callbacks.batch_transform.
BatchTransformCallback
(transform: Union[Callable, str], scope: str, input_key: Optional[Union[str, List[str]]] = None, output_key: Optional[Union[str, List[str]]] = None, transform_kwargs: Optional[Dict[str, Any]] = None)[source]¶ Bases:
catalyst.core.callback.Callback
Preprocess your batch with specified function.
- Parameters
transform (Callable, str) – Function to apply. If string will get function from registry.
scope (str) –
"on_batch_end"
(post-processing model output) or"on_batch_start"
(pre-processing model input).input_key (Union[List[str], str], optional) – Keys in batch dict to apply function. Defaults to
None
.output_key (Union[List[str], str], optional) – Keys for output. If None then will apply function inplace to
keys_to_apply
. Defaults toNone
.transform_kwargs (Dict[str, Any]) – Kwargs for transform.
- Raises
TypeError – When keys is not str or a list. When
scope
is not in["on_batch_end", "on_batch_start"]
.
Examples
import torch from torch.utils.data import DataLoader, TensorDataset from catalyst import dl # sample data num_users, num_features, num_items = int(1e4), int(1e1), 10 X = torch.rand(num_users, num_features) y = (torch.rand(num_users, num_items) > 0.5).to(torch.float32) # pytorch loaders dataset = TensorDataset(X, y) loader = DataLoader(dataset, batch_size=32, num_workers=1) loaders = {"train": loader, "valid": loader} # model, criterion, optimizer, scheduler model = torch.nn.Linear(num_features, num_items) criterion = torch.nn.BCEWithLogitsLoss() optimizer = torch.optim.Adam(model.parameters()) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [2]) # model training runner = SupervisedRunner() runner.train( model=model, criterion=criterion, optimizer=optimizer, scheduler=scheduler, loaders=loaders, num_epochs=3, verbose=True, callbacks=[ dl.BatchTransformCallback( input_key="logits", output_key="scores", transform="F.sigmoid", ), dl.CriterionCallback( input_key="logits", target_key="targets", metric_key="loss" ), # uncomment for extra metrics: # dl.AUCCallback( # input_key="scores", target_key="targets" # ), # dl.HitrateCallback( # input_key="scores", target_key="targets", topk_args=(1, 3, 5) # ), # dl.MRRCallback( # input_key="scores", target_key="targets", topk_args=(1, 3, 5) # ), # dl.MAPCallback(input_key="scores", target_key="targets", topk_args=(1, 3, 5)), # dl.NDCGCallback( # input_key="scores", target_key="targets", topk_args=(1, 3, 5) # ), dl.OptimizerCallback(metric_key="loss"), dl.SchedulerCallback(), dl.CheckpointCallback( logdir="./logs", loader_key="valid", metric_key="map01", minimize=False ), ] )
class CustomRunner(dl.Runner): def handle_batch(self, batch): logits = self.model( batch["features"].view(batch["features"].size(0), -1) ) loss = F.cross_entropy(logits, batch["targets"]) accuracy01, accuracy03 = metrics.accuracy( logits, batch["targets"], topk=(1, 3) ) self.batch_metrics.update( {"loss": loss, "accuracy01": accuracy01, "accuracy03": accuracy03} ) if self.is_train_loader: loss.backward() self.optimizer.step() self.optimizer.zero_grad() class MnistDataset(torch.utils.data.Dataset): def __init__(self, dataset): self.dataset = dataset def __getitem__(self, item): return {"features": self.dataset[item][0], "targets": self.dataset[item][1]} def __len__(self): return len(self.dataset) model = torch.nn.Linear(28 * 28, 10) optimizer = torch.optim.Adam(model.parameters(), lr=0.02) loaders = { "train": DataLoader( MnistDataset( MNIST(os.getcwd(), train=False, download=True, transform=ToTensor()) ), batch_size=32, ), "valid": DataLoader( MnistDataset( MNIST(os.getcwd(), train=False, download=True, transform=ToTensor()) ), batch_size=32, ), } transrorms = [ augmentation.RandomAffine(degrees=(-15, 20), scale=(0.75, 1.25)), ] runner = CustomRunner() # model training runner.train( model=model, optimizer=optimizer, loaders=loaders, logdir="./logs", num_epochs=5, verbose=False, load_best_on_end=True, check=True, callbacks=[ BatchTransformCallback( transform=transrorms, scope="on_batch_start", input_key="features" ) ], )
... callbacks: transform: _target_: BatchTransformCallback transform: catalyst.ToTensor scope: on_batch_start input_key: features
-
__init__
(transform: Union[Callable, str], scope: str, input_key: Optional[Union[str, List[str]]] = None, output_key: Optional[Union[str, List[str]]] = None, transform_kwargs: Optional[Dict[str, Any]] = None)[source]¶ Preprocess your batch with specified function.
- Parameters
transform (Callable, str) – Function to apply. If string will get function from registry.
scope (str) –
"on_batch_end"
(post-processing model output) or"on_batch_start"
(pre-processing model input).input_key (Union[List[str], str], optional) – Keys in batch dict to apply function. Defaults to
None
.output_key (Union[List[str], str], optional) – Keys for output. If None then will apply function inplace to
keys_to_apply
. Defaults toNone
.transform_kwargs (Dict[str, Any]) – Kwargs for transform.
- Raises
TypeError – When keys is not str or a list. When
scope
is not in["on_batch_end", "on_batch_start"]
.
CheckpointCallback¶
-
class
catalyst.callbacks.checkpoint.
CheckpointCallback
(logdir: Optional[str] = None, loader_key: Optional[str] = None, metric_key: Optional[str] = None, minimize: Optional[bool] = None, min_delta: float = 1e-06, save_n_best: int = 1, load_on_stage_start: Optional[Union[str, Dict[str, str]]] = None, load_on_stage_end: Optional[Union[str, Dict[str, str]]] = None, metrics_filename: str = '_metrics.json', mode: str = 'all', use_logdir_postfix: bool = False, use_runner_logdir: bool = False)[source]¶ Bases:
catalyst.callbacks.checkpoint.ICheckpointCallback
Checkpoint callback to save/restore your model/criterion/optimizer/scheduler.
- Parameters
logdir – directory to store chekpoints
loader_key – loader key for best model selection (based on metric score over the dataset)
metric_key – metric key for best model selection (based on metric score over the dataset)
minimize – boolean flag to minimize the required metric
min_delta – minimal delta for metric improve
save_n_best – number of best checkpoint to keep, if
0
then store only last state of model andload_on_stage_end
should be one oflast
orlast_full
.load_on_stage_start (str or Dict[str, str]) –
load specified state/model at stage start.
If passed string then will be performed initialization from specified state (
best
/best_full
/last
/last_full
) or checkpoint file.If passed dict then will be performed initialization only for specified parts - model, criterion, optimizer, scheduler.
Example
>>> # possible checkpoints to use: >>> # "best"/"best_full"/"last"/"last_full" >>> # or path to specific checkpoint >>> to_load = { >>> "model": "path/to/checkpoint.pth", >>> "criterion": "best", >>> "optimizer": "last_full", >>> "scheduler": "best_full", >>> } >>> CheckpointCallback(load_on_stage_start=to_load)
All other keys instead of
"model"
,"criterion"
,"optimizer"
and"scheduler"
will be ignored.If
None
or an empty dict (or dict without mentioned above keys) then no action is required at stage start and:Config API - will be used best state of model
Notebook API - no action will be performed (will be used the last state)
NOTE: Loading will be performed on all stages except first.
NOTE: Criterion, optimizer and scheduler are optional keys and should be loaded from full checkpoint.
Model state can be loaded from any checkpoint.
When dict contains keys for model and some other part (for example
{"model": "last", "optimizer": "last"}
) and they match in prefix ("best"
and"best_full"
) then will be loaded full checkpoint because it contains required states.load_on_stage_end (str or Dict[str, str]) –
load specified state/model at stage end.
If passed string then will be performed initialization from specified state (
best
/best_full
/last
/last_full
) or checkpoint file.If passed dict then will be performed initialization only for specified parts - model, criterion, optimizer, scheduler. Logic for dict is the same as for
load_on_stage_start
.If
None
then no action is required at stage end and will be used the last runner.NOTE: Loading will be performed always at stage end.
metrics_filename – filename to save metrics in checkpoint folder. Must ends on
.json
or.yml
mode – checkpoining mode, could be
all
,full
,model
use_logdir_postfix – boolean flag to use extra prefix
checkpoints
for logdiruse_runner_logdir – boolean flag to use
runner._logdir
as logdir
Examples:
import torch from torch.utils.data import DataLoader, TensorDataset from catalyst import dl # sample data num_users, num_features, num_items = int(1e4), int(1e1), 10 X = torch.rand(num_users, num_features) y = (torch.rand(num_users, num_items) > 0.5).to(torch.float32) # pytorch loaders dataset = TensorDataset(X, y) loader = DataLoader(dataset, batch_size=32, num_workers=1) loaders = {"train": loader, "valid": loader} # model, criterion, optimizer, scheduler model = torch.nn.Linear(num_features, num_items) criterion = torch.nn.BCEWithLogitsLoss() optimizer = torch.optim.Adam(model.parameters()) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [2]) # model training runner = dl.SupervisedRunner( input_key="features", output_key="logits", target_key="targets", loss_key="loss" ) runner.train( model=model, criterion=criterion, optimizer=optimizer, scheduler=scheduler, loaders=loaders, num_epochs=3, verbose=True, callbacks=[ dl.BatchTransformCallback( transform=torch.sigmoid, scope="on_batch_end", input_key="logits", output_key="scores" ), dl.CriterionCallback( input_key="logits", target_key="targets", metric_key="loss" ), dl.AUCCallback(input_key="scores", target_key="targets"), dl.HitrateCallback( input_key="scores", target_key="targets", topk_args=(1, 3, 5) ), dl.MRRCallback(input_key="scores", target_key="targets", topk_args=(1, 3, 5)), dl.MAPCallback(input_key="scores", target_key="targets", topk_args=(1, 3, 5)), dl.NDCGCallback(input_key="scores", target_key="targets", topk_args=(1, 3, 5)), dl.OptimizerCallback(metric_key="loss"), dl.SchedulerCallback(), dl.CheckpointCallback( logdir="./logs", loader_key="valid", metric_key="loss", minimize=True ), ] )
Note
Please follow the minimal examples sections for more use cases.
-
__init__
(logdir: Optional[str] = None, loader_key: Optional[str] = None, metric_key: Optional[str] = None, minimize: Optional[bool] = None, min_delta: float = 1e-06, save_n_best: int = 1, load_on_stage_start: Optional[Union[str, Dict[str, str]]] = None, load_on_stage_end: Optional[Union[str, Dict[str, str]]] = None, metrics_filename: str = '_metrics.json', mode: str = 'all', use_logdir_postfix: bool = False, use_runner_logdir: bool = False)[source]¶ Init.
ControlFlowCallback¶
-
class
catalyst.callbacks.control_flow.
ControlFlowCallback
(base_callback: catalyst.core.callback.Callback, epochs: Optional[Union[int, Sequence[int]]] = None, ignore_epochs: Optional[Union[int, Sequence[int]]] = None, loaders: Optional[Union[str, Sequence[str], Mapping[str, Union[int, Sequence[int]]]]] = None, ignore_loaders: Optional[Union[str, Sequence[str], Mapping[str, Union[int, Sequence[int]]]]] = None, filter_fn: Optional[Union[str, Callable[[str, int, str], bool]]] = None, use_global_epochs: bool = False)[source]¶ Bases:
catalyst.core.callback.CallbackWrapper
Enable/disable callback execution on different stages, loaders and epochs.
- Parameters
base_callback – callback to wrap
epochs –
epochs where need to enable callback, on other epochs callback will be disabled.
If passed int/float then callback will be enabled with period specified as epochs value (epochs expression
epoch_number % epochs == 0
) and disabled on other epochs.If passed list of epochs then will be executed callback on specified epochs.
Default value is
None
.ignore_epochs: –
epochs where: need to disable callback, on other epochs callback will be enabled.
If passed int/float then callback will be disabled with period specified as epochs value (epochs expression
epoch_number % epochs != 0
) and enabled on other epochs.If passed list of epochs then will be disabled callback on specified epochs.
Default value is
None
.loaders (str/Sequence[str]/Mapping[str, int/Sequence[str]]) –
loaders where should be enabled callback, on other loaders callback will be disabled.
If passed string object then will be disabled callback for loader with specified name.
If passed list/tuple of strings then will be disabled callback for loaders with specified names.
If passed dictionary where key is a string and values int or list of integers then callback will be disabled on epochs (dictionary value) for specified loader (dictionary key).
Default value is
None
.ignore_loaders (str/Sequence[str]/Mapping[str, int/Sequence[str]]) –
loader names where should be disabled callback, on other loaders callback will be enabled.
If passed string object then will be disabled callback for loader with specified name.
If passed list/tuple of strings then will be disabled callback for loaders with specified names.
If passed dictionary where key is a string and values int or list of integers then callback will be disabled on epochs (dictionary value) for specified loader (dictionary key).
Default value is
None
.filter_fn (str or Callable[[str, int, str], bool]) –
function to use instead of
loaders
orepochs
arguments.If the object passed to a
filter_fn
is a string then it will be interpreted as python code. Expected lambda function with three arguments stage name (str), epoch number (int), loader name (str) and this function should returnTrue
if callback should be enabled on some condition.If passed callable object then it should accept three arguments - stage name (str), epoch number (int), loader name (str) and should return
True
if callback should be enabled on some condition othervise should returnFalse
.Default value is
None
.Examples:
# enable callback on all loaders # exept "train" loader every 2 epochs ControlFlowCallback( ... filter_fn=lambda s, e, l: l != "train" and e % 2 == 0 ... ) # or with string equivalent ControlFlowCallback( ... filter_fn="lambda s, e, l: l != 'train' and e % 2 == 0" ... )
use_global_epochs – if
True
then will be used global epochs instead of epochs in a stage, the default value isFalse
Note
Please run experiment with
check option
to check if everything works as expected with this callback.For example, if you don’t want to compute loss on a validation you can ignore
CriterionCallback
, for notebook API need to wrap callback:import torch from torch.utils.data import DataLoader, TensorDataset from catalyst.dl import ( SupervisedRunner, AccuracyCallback, CriterionCallback, ControlFlowCallback, ) num_samples, num_features = 10_000, 10 n_classes = 10 X = torch.rand(num_samples, num_features) y = torch.randint(0, n_classes, [num_samples]) loader = DataLoader(TensorDataset(X, y), batch_size=32, num_workers=1) loaders = {"train": loader, "valid": loader} model = torch.nn.Linear(num_features, n_classes) criterion = torch.nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters()) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [3, 6]) runner = SupervisedRunner() runner.train( model=model, criterion=criterion, optimizer=optimizer, scheduler=scheduler, loaders=loaders, logdir="./logdir", num_epochs=5, verbose=False, valid_metric="accuracy03", minimize_metric=False, callbacks=[ AccuracyCallback( accuracy_args=[1, 3, 5] ), ControlFlowCallback( base_callback=CriterionCallback(), ignore_loaders="valid" # or loaders="train" ) ] )
In config API need to use
_wrapper
argument:callbacks_params: ... loss: _wrapper: callback: ControlFlowCallback ignore_loaders: valid callback: CriterionCallback ...
-
__init__
(base_callback: catalyst.core.callback.Callback, epochs: Optional[Union[int, Sequence[int]]] = None, ignore_epochs: Optional[Union[int, Sequence[int]]] = None, loaders: Optional[Union[str, Sequence[str], Mapping[str, Union[int, Sequence[int]]]]] = None, ignore_loaders: Optional[Union[str, Sequence[str], Mapping[str, Union[int, Sequence[int]]]]] = None, filter_fn: Optional[Union[str, Callable[[str, int, str], bool]]] = None, use_global_epochs: bool = False)[source]¶ Init.
CriterionCallback¶
-
class
catalyst.callbacks.criterion.
CriterionCallback
(input_key: str, target_key: str, metric_key: str, criterion_key: Optional[str] = None, prefix: Optional[str] = None, suffix: Optional[str] = None)[source]¶ Bases:
catalyst.callbacks.metrics.functional_metric.FunctionalMetricCallback
,catalyst.callbacks.criterion.ICriterionCallback
Criterion callback, abstraction over criterion step.
- Parameters
input_key – input key to use for metric calculation, specifies our y_pred
target_key – output key to use for metric calculation, specifies our y_true
metric_key – key to store computed metric in
runner.batch_metrics
dictionarycriterion_key – A key to take a criterion in case there are several of them, and they are in a dictionary format.
Examples:
import torch from torch.utils.data import DataLoader, TensorDataset from catalyst import dl # sample data num_users, num_features, num_items = int(1e4), int(1e1), 10 X = torch.rand(num_users, num_features) y = (torch.rand(num_users, num_items) > 0.5).to(torch.float32) # pytorch loaders dataset = TensorDataset(X, y) loader = DataLoader(dataset, batch_size=32, num_workers=1) loaders = {"train": loader, "valid": loader} # model, criterion, optimizer, scheduler model = torch.nn.Linear(num_features, num_items) criterion = torch.nn.BCEWithLogitsLoss() optimizer = torch.optim.Adam(model.parameters()) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [2]) # model training runner = dl.SupervisedRunner( input_key="features", output_key="logits", target_key="targets", loss_key="loss" ) runner.train( model=model, criterion=criterion, optimizer=optimizer, scheduler=scheduler, loaders=loaders, num_epochs=3, verbose=True, callbacks=[ dl.BatchTransformCallback( transform=torch.sigmoid, scope="on_batch_end", input_key="logits", output_key="scores" ), dl.CriterionCallback( input_key="logits", target_key="targets", metric_key="loss" ), dl.AUCCallback(input_key="scores", target_key="targets"), dl.HitrateCallback( input_key="scores", target_key="targets", topk_args=(1, 3, 5) ), dl.MRRCallback(input_key="scores", target_key="targets", topk_args=(1, 3, 5)), dl.MAPCallback(input_key="scores", target_key="targets", topk_args=(1, 3, 5)), dl.NDCGCallback(input_key="scores", target_key="targets", topk_args=(1, 3, 5)), dl.OptimizerCallback(metric_key="loss"), dl.SchedulerCallback(), dl.CheckpointCallback( logdir="./logs", loader_key="valid", metric_key="loss", minimize=True ), ] )
Note
Please follow the minimal examples sections for more use cases.
Metric – BatchMetricCallback¶
-
class
catalyst.callbacks.metric.
BatchMetricCallback
(metric: catalyst.metrics._metric.ICallbackBatchMetric, input_key: Union[str, Iterable[str], Dict[str, str]], target_key: Union[str, Iterable[str], Dict[str, str]], log_on_batch: bool = True)[source]¶ Bases:
catalyst.callbacks.metric.MetricCallback
BatchMetricCallback implements batch-based metrics update and computation over loader
- Parameters
metric – metric to calculate in callback
input_key – keys of tensors that should be used as inputs in metric calculation
target_key – keys of tensors that should be used as targets in metric calculation
log_on_batch – boolean flag to log computed metrics every batch
-
__init__
(metric: catalyst.metrics._metric.ICallbackBatchMetric, input_key: Union[str, Iterable[str], Dict[str, str]], target_key: Union[str, Iterable[str], Dict[str, str]], log_on_batch: bool = True) → None[source]¶ Init BatchMetricCallback
Metric – LoaderMetricCallback¶
-
class
catalyst.callbacks.metric.
LoaderMetricCallback
(metric: catalyst.metrics._metric.ICallbackLoaderMetric, input_key: Union[str, Iterable[str], Dict[str, str]], target_key: Union[str, Iterable[str], Dict[str, str]])[source]¶ Bases:
catalyst.callbacks.metric.MetricCallback
LoaderMetricCallback implements loader-based metrics update and computation over loader
- Parameters
metric – metric to calculate in callback
input_key – keys of tensors that should be used as inputs in metric calculation
target_key – keys of tensors that should be used as targets in metric calculation
Metric – MetricAggregationCallback¶
-
class
catalyst.callbacks.metric_aggregation.
MetricAggregationCallback
(metric_key: str, metrics: Optional[Union[str, List[str], Dict[str, float]]] = None, mode: Union[str, Callable] = 'mean', scope: str = 'batch', multiplier: float = 1.0)[source]¶ Bases:
catalyst.core.callback.Callback
A callback to aggregate several metrics in one value.
- Parameters
metric_key – new key for aggregated metric.
metrics (Union[str, List[str], Dict[str, float]]) – If not None, it aggregates only the values from the metric by these keys. for
weighted_sum
aggregation it must be a Dict[str, float].mode – function for aggregation. Must be either
sum
,mean
orweighted_sum
or user’s function to aggregate metrics. This function must get dict of metrics and runner and return aggregated metric. It can be useful for complicated fine tuning with different losses that depends on epochs and loader or something alsoscope – type of metric. Must be either
batch
orloader
multiplier – scale factor for the aggregated metric.
Python example - loss is a weighted sum of cross entropy loss and binary cross entropy loss:
import torch from torch.utils.data import DataLoader, TensorDataset from catalyst import dl # data num_samples, num_features, num_classes = int(1e4), int(1e1), 4 X = torch.rand(num_samples, num_features) y = (torch.rand(num_samples,) * num_classes).to(torch.int64) dataset = TensorDataset(X, y) loader = DataLoader(dataset, batch_size=32, num_workers=1) loaders = {"train": loader, "valid": loader} # model, criterion, optimizer, scheduler model = torch.nn.Linear(num_features, num_classes) criterion = {"ce": torch.nn.CrossEntropyLoss(), "bce": torch.nn.BCEWithLogitsLoss()} optimizer = torch.optim.Adam(model.parameters()) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [2]) # runner class CustomRunner(dl.Runner): def handle_batch(self, batch): x, y = batch logits = self.model(x) num_classes = logits.shape[-1] targets_onehot = torch.nn.functional.one_hot(y, num_classes=num_classes) self.batch = { "features": x, "logits": logits, "targets": y, "targets_onehot": targets_onehot.float(), } # training runner = CustomRunner() runner.train( model=model, criterion=criterion, optimizer=optimizer, scheduler=scheduler, loaders=loaders, logdir="./logdir", valid_loader="valid", valid_metric="loss", minimize_valid_metric=True, num_epochs=3, callbacks=[ dl.AccuracyCallback( input_key="logits", target_key="targets", num_classes=num_classes ), dl.CriterionCallback( input_key="logits", target_key="targets", metric_key="loss_ce", criterion_key="ce", ), dl.CriterionCallback( input_key="logits", target_key="targets_onehot", metric_key="loss_bce", criterion_key="bce", ), # loss aggregation dl.MetricAggregationCallback( metric_key="loss", metrics={"loss_ce": 0.6, "loss_bce": 0.4}, mode="weighted_sum", ), dl.OptimizerCallback(metric_key="loss"), ], )
Misc – CheckRunCallback¶
-
class
catalyst.callbacks.misc.
CheckRunCallback
(num_batch_steps: int = 3, num_epoch_steps: int = 3)[source]¶ Bases:
catalyst.core.callback.Callback
Executes only a pipeline part from the run.
- Parameters
num_batch_steps – number of batches to iterate in epoch
num_epoch_steps – number of epoch to perform in a stage
Minimal working example (Notebook API):
import torch from torch.utils.data import DataLoader, TensorDataset from catalyst import dl # data num_samples, num_features = int(1e4), int(1e1) X, y = torch.rand(num_samples, num_features), torch.rand(num_samples) dataset = TensorDataset(X, y) loader = DataLoader(dataset, batch_size=32, num_workers=1) loaders = {"train": loader, "valid": loader} # model, criterion, optimizer, scheduler model = torch.nn.Linear(num_features, 1) criterion = torch.nn.MSELoss() optimizer = torch.optim.Adam(model.parameters()) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [3, 6]) # model training runner = dl.SupervisedRunner() runner.train( model=model, criterion=criterion, optimizer=optimizer, scheduler=scheduler, loaders=loaders, logdir="./logdir", num_epochs=8, verbose=True, callbacks=[ dl.CheckRunCallback(num_batch_steps=3, num_epoch_steps=3) ] )
Misc – EarlyStoppingCallback¶
-
class
catalyst.callbacks.misc.
EarlyStoppingCallback
(patience: int, loader_key: str, metric_key: str, minimize: bool, min_delta: float = 1e-06)[source]¶ Bases:
catalyst.callbacks.misc.IEpochMetricHandlerCallback
Stage early stop based on metric.
- Parameters
patience – number of epochs with no improvement after which training will be stopped.
loader_key – loader key for early stopping (based on metric score over the dataset)
metric_key – metric key for early stopping (based on metric score over the dataset)
minimize – if
True
then expected that metric should decrease and early stopping will be performed only when metric stops decreasing. IfFalse
then expected that metric should increase. Default valueTrue
.min_delta – minimum change in the monitored metric to qualify as an improvement, i.e. an absolute change of less than min_delta, will count as no improvement, default value is
1e-6
.
-
__init__
(patience: int, loader_key: str, metric_key: str, minimize: bool, min_delta: float = 1e-06)[source]¶ Init.
-
handle_score_is_better
(runner: catalyst.core.runner.IRunner)[source]¶ Event handler.
-
handle_score_is_not_better
(runner: catalyst.core.runner.IRunner)[source]¶ Event handler.
Misc – TimerCallback¶
-
class
catalyst.callbacks.misc.
TimerCallback
[source]¶ Bases:
catalyst.core.callback.Callback
Logs pipeline execution time.
Misc – TqdmCallback¶
-
class
catalyst.callbacks.misc.
TqdmCallback
[source]¶ Bases:
catalyst.core.callback.Callback
Logs the params into tqdm console.
-
on_exception
(runner: catalyst.core.runner.IRunner)[source]¶ Called if an Exception was raised.
-
OnnxCallback¶
-
class
catalyst.callbacks.onnx.
OnnxCallback
(input_key: str, logdir: Optional[Union[str, pathlib.Path]] = None, filename: str = 'onnx.py', method_name: str = 'forward', input_names: Optional[Iterable] = None, output_names: Optional[List[str]] = None, dynamic_axes: Optional[Union[Dict[str, int], Dict[str, Dict[str, int]]]] = None, opset_version: int = 9, do_constant_folding: bool = False, verbose: bool = False)[source]¶ Bases:
catalyst.core.callback.Callback
Callback for converting model to onnx runtime.
- Parameters
input_key – input key from
runner.batch
to use for onnx exportlogdir – path to folder for saving
filename – filename
method_name (str, optional) – Forward pass method to be converted. Defaults to “forward”.
input_names (Iterable, optional) – name of inputs in graph. Defaults to None.
output_names (List[str], optional) – name of outputs in graph. Defaults to None.
dynamic_axes (Union[Dict[str, int], Dict[str, Dict[str, int]]], optional) – axes with dynamic shapes. Defaults to None.
opset_version (int, optional) – Defaults to 9.
do_constant_folding (bool, optional) – If True, the constant-folding optimization is applied to the model during export. Defaults to False.
verbose (bool, default False) – if specified, we will print out a debug description of the trace being exported.
Example
import os import torch from torch import nn from torch.utils.data import DataLoader from catalyst import dl from catalyst.data import ToTensor from catalyst.contrib.datasets import MNIST from catalyst.contrib.nn.modules import Flatten loaders = { "train": DataLoader( MNIST( os.getcwd(), train=False, download=True, transform=ToTensor() ), batch_size=32, ), "valid": DataLoader( MNIST( os.getcwd(), train=False, download=True, transform=ToTensor() ), batch_size=32, ), } model = nn.Sequential(Flatten(), nn.Linear(784, 512), nn.ReLU(), nn.Linear(512, 10)) criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=1e-2) runner = dl.SupervisedRunner() runner.train( model=model, callbacks=[dl.OnnxCallback(input_key="features", logdir="./logs")], loaders=loaders, criterion=criterion, optimizer=optimizer, num_epochs=1, logdir="./logs", )
-
__init__
(input_key: str, logdir: Optional[Union[str, pathlib.Path]] = None, filename: str = 'onnx.py', method_name: str = 'forward', input_names: Optional[Iterable] = None, output_names: Optional[List[str]] = None, dynamic_axes: Optional[Union[Dict[str, int], Dict[str, Dict[str, int]]]] = None, opset_version: int = 9, do_constant_folding: bool = False, verbose: bool = False)[source]¶ Init.
OptimizerCallback¶
-
class
catalyst.callbacks.optimizer.
OptimizerCallback
(metric_key: str, model_key: Optional[str] = None, optimizer_key: Optional[str] = None, accumulation_steps: int = 1, grad_clip_fn: Optional[Union[str, Callable]] = None, grad_clip_params: Optional[Dict] = None)[source]¶ Bases:
catalyst.callbacks.optimizer.IOptimizerCallback
Optimizer callback, abstraction over optimizer step.
- Parameters
metric_key – a key to get loss from
runner.batch_metrics
model_key – a key to select a model from
runner.model
in case there are several of them and they are in a dictionary format.optimizer_key – a key to select a optimizer from
runner.optimizer
in case there are several of them and they are in a dictionary format.accumulation_steps – number of steps before
model.zero_grad()
grad_clip_fn – callable gradient cliping function or it’s name or
grad_clip_params – key-value parameters for grad_clip_fn
Examples:
import torch from torch.utils.data import DataLoader, TensorDataset from catalyst import dl # sample data num_users, num_features, num_items = int(1e4), int(1e1), 10 X = torch.rand(num_users, num_features) y = (torch.rand(num_users, num_items) > 0.5).to(torch.float32) # pytorch loaders dataset = TensorDataset(X, y) loader = DataLoader(dataset, batch_size=32, num_workers=1) loaders = {"train": loader, "valid": loader} # model, criterion, optimizer, scheduler model = torch.nn.Linear(num_features, num_items) criterion = torch.nn.BCEWithLogitsLoss() optimizer = torch.optim.Adam(model.parameters()) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [2]) # model training runner = dl.SupervisedRunner( input_key="features", output_key="logits", target_key="targets", loss_key="loss" ) runner.train( model=model, criterion=criterion, optimizer=optimizer, scheduler=scheduler, loaders=loaders, num_epochs=3, verbose=True, callbacks=[ dl.BatchTransformCallback( transform=torch.sigmoid, scope="on_batch_end", input_key="logits", output_key="scores" ), dl.CriterionCallback( input_key="logits", target_key="targets", metric_key="loss" ), dl.AUCCallback(input_key="scores", target_key="targets"), dl.HitrateCallback( input_key="scores", target_key="targets", topk_args=(1, 3, 5) ), dl.MRRCallback(input_key="scores", target_key="targets", topk_args=(1, 3, 5)), dl.MAPCallback(input_key="scores", target_key="targets", topk_args=(1, 3, 5)), dl.NDCGCallback(input_key="scores", target_key="targets", topk_args=(1, 3, 5)), dl.OptimizerCallback(metric_key="loss"), dl.SchedulerCallback(), dl.CheckpointCallback( logdir="./logs", loader_key="valid", metric_key="loss", minimize=True ), ] )
Note
Please follow the minimal examples sections for more use cases.
OptunaPruningCallback¶
-
class
catalyst.callbacks.optuna.
OptunaPruningCallback
(loader_key: str, metric_key: str, minimize: bool, min_delta: float = 1e-06, trial: Optional[optuna.trial._trial.Trial] = None)[source]¶ Bases:
catalyst.core.callback.Callback
Optuna callback for pruning unpromising runs. This callback can be used for early stopping (pruning) unpromising runs.
- Parameters
loader_key – loader key for best model selection (based on metric score over the dataset)
metric_key – metric key for best model selection (based on metric score over the dataset)
minimize – boolean flag to minimize the required metric
min_delta – minimal delta for metric improve
trial – Optuna.Trial for experiment.
import optuna from catalyst.dl import SupervisedRunner, OptunaPruningCallback # some python code ... def objective(trial: optuna.Trial): # standard optuna code for model and/or optimizer suggestion ... runner = SupervisedRunner() runner.train( model=model, loaders=loaders, criterion=criterion, optimizer=optimizer, callbacks=[ OptunaPruningCallback(trial) # some other callbacks ... ], num_epochs=num_epochs, ) return runner.best_valid_metrics[runner.valid_metric] study = optuna.create_study() study.optimize(objective, n_trials=100, timeout=600)
Config API is supported through catalyst-dl tune command.
PeriodicLoaderCallback¶
-
class
catalyst.callbacks.periodic_loader.
PeriodicLoaderCallback
(valid_loader_key: str, valid_metric_key: str, minimize: bool = True, **kwargs)[source]¶ Bases:
catalyst.core.callback.Callback
Callback for runing loaders with specified period. To disable loader use
0
as period (if specified0
for validation loader then will be raised an error).- Parameters
kwargs – loader names and their run periods.
For example, if you have
train
,train_additional
,valid
andvalid_additional
loaders and wan’t to usetrain_additional
every 2 epochs,valid
- every 3 epochs andvalid_additional
- every 5 epochs:from catalyst.dl import ( SupervisedRunner, PeriodicLoaderRunnerCallback, ) runner = SupervisedRunner() runner.train( ... loaders={ "train": ..., "train_additional": ..., "valid": ..., "valid_additional":... } ... callbacks=[ ... PeriodicLoaderRunnerCallback( train_additional=2, valid=3, valid_additional=5 ), ... ] ... )
PruningCallback¶
-
class
catalyst.callbacks.pruning.
PruningCallback
(pruning_fn: Union[Callable, str], amount: Union[int, float], keys_to_prune: Optional[List[str]] = None, prune_on_epoch_end: Optional[bool] = False, prune_on_stage_end: Optional[bool] = True, remove_reparametrization_on_stage_end: Optional[bool] = True, layers_to_prune: Optional[List[str]] = None, dim: Optional[int] = None, l_norm: Optional[int] = None)[source]¶ Bases:
catalyst.core.callback.Callback
This callback prunes network parameters during and/or after training.
- Parameters
pruning_fn – function from torch.nn.utils.prune module or your based on BasePruningMethod. Can be string e.g. “l1_unstructured”. See pytorch docs for more details.
amount – quantity of parameters to prune. If float, should be between 0.0 and 1.0 and represent the fraction of parameters to prune. If int, it represents the absolute number of parameters to prune.
keys_to_prune – list of strings. Determines which tensor in modules will be pruned.
prune_on_epoch_end – bool flag determines call or not to call pruning_fn on epoch end.
prune_on_stage_end – bool flag determines call or not to call pruning_fn on stage end.
remove_reparametrization_on_stage_end – if True then all reparametrization pre-hooks and tensors with mask will be removed on stage end.
layers_to_prune – list of strings - module names to be pruned. If None provided then will try to prune every module in model.
dim – if you are using structured pruning method you need to specify dimension.
l_norm – if you are using ln_structured you need to specify l_norm.
-
__init__
(pruning_fn: Union[Callable, str], amount: Union[int, float], keys_to_prune: Optional[List[str]] = None, prune_on_epoch_end: Optional[bool] = False, prune_on_stage_end: Optional[bool] = True, remove_reparametrization_on_stage_end: Optional[bool] = True, layers_to_prune: Optional[List[str]] = None, dim: Optional[int] = None, l_norm: Optional[int] = None) → None[source]¶ Init.
ProfilerCallback¶
-
class
catalyst.callbacks.profiler.
ProfilerCallback
(loader_key: Optional[str] = None, epoch: int = 1, num_batches: Optional[int] = None, profiler_kwargs: Optional[Dict[str, Any]] = None, tensorboard_path: Optional[str] = None, export_chrome_trace_path: Optional[str] = None, export_stacks_kwargs: Optional[Dict[str, Any]] = None)[source]¶ Bases:
catalyst.core.callback.Callback
Profile specified epoch or some fixed number of batches.
- Parameters
loader_key – name of the loader to use for profiling. If
None
then will be used first loader from experiment.epoch – epoch number to use for profiling.
num_batches – number of batches to use in epoch to do a profiling. If
None
then will be used all batches in loader.profiler_kwargs – arguments to pass to a profiler. To get more info about possible arguments please use PyTorch profiler docs.
tensorboard_path – path where should be stored logs for tensorboard. If
None
then will be ignored.export_chrome_trace_path – path to export chrome trace. If
None
then will be ignored exporting chrome trace to a file.export_stacks_kwargs –
arguments to pass to a
profiler.export_stacks
method. IfNone
then triggeringprofiler.export_stacks
will be avoided.Example of using FlameGraph tool:
git clone https://github.com/brendangregg/FlameGraph cd FlameGraph ./flamegraph.pl –title “CPU time” –countname “us.” profiler.stacks > perf_viz.svg
Note
Export to tensorboard and chrome trace mutually exclusive and specifying both of them will raise an error.
Example
import os import torch from torch import nn from torch.utils.data import DataLoader from catalyst import dl from catalyst.data import ToTensor from catalyst.contrib.datasets import MNIST from catalyst.contrib.nn.modules import Flatten loaders = { "train": DataLoader( MNIST(os.getcwd(), train=False, download=True, transform=ToTensor()), batch_size=32, ), "valid": DataLoader( MNIST(os.getcwd(), train=False, download=True, transform=ToTensor()), batch_size=32, ), } model = nn.Sequential(Flatten(), nn.Linear(784, 512), nn.ReLU(), nn.Linear(512, 10)) criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=1e-2) runner = dl.SupervisedRunner() runner.train( model=model, callbacks=[dl.ProfilerCallback( loader_key="train", epoch=3, profiler_kwargs=dict( activities=[ torch.profiler.ProfilerActivity.CPU, torch.profiler.ProfilerActivity.CUDA, ], on_trace_ready=torch.profiler.tensorboard_trace_handler( "./logs/tb_profile" ), with_stack=True, with_flops=True, ) )], loaders=loaders, criterion=criterion, optimizer=optimizer, num_epochs=5, logdir="./logs", )
QuantizationCallback¶
-
class
catalyst.callbacks.quantization.
QuantizationCallback
(logdir: Optional[Union[str, pathlib.Path]] = None, filename: str = 'quantized.pth', qconfig_spec: Optional[Dict] = None, dtype: Optional[Union[str, torch.dtype]] = 'qint8')[source]¶ Bases:
catalyst.core.callback.Callback
Callback for model quantiztion.
- Parameters
logdir – path to folder for saving
filename – filename
qconfig_spec (Dict, optional) – quantization config in PyTorch format. Defaults to None.
dtype (Union[str, Optional[torch.dtype]], optional) – Type of weights after quantization. Defaults to “qint8”.
Example
import os import torch from torch import nn from torch.utils.data import DataLoader from catalyst import dl from catalyst.data import ToTensor from catalyst.contrib.datasets import MNIST from catalyst.contrib.nn.modules import Flatten loaders = { "train": DataLoader( MNIST(os.getcwd(), train=False, download=True, transform=ToTensor()), batch_size=32, ), "valid": DataLoader( MNIST(os.getcwd(), train=False, download=True, transform=ToTensor()), batch_size=32, ), } model = nn.Sequential(Flatten(), nn.Linear(784, 512), nn.ReLU(), nn.Linear(512, 10)) criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=1e-2) runner = dl.SupervisedRunner() runner.train( model=model, callbacks=[dl.QuantizationCallback(logdir="./logs")], loaders=loaders, criterion=criterion, optimizer=optimizer, num_epochs=1, logdir="./logs", )
Scheduler – SchedulerCallback¶
-
class
catalyst.callbacks.scheduler.
SchedulerCallback
(scheduler_key: Optional[str] = None, mode: Optional[str] = None, loader_key: Optional[str] = None, metric_key: Optional[str] = None)[source]¶ Bases:
catalyst.callbacks.scheduler.ISchedulerCallback
Scheduler callback, abstraction over scheduler step.
- Parameters
scheduler_key – scheduler name, if
None
, default isNone
.mode – scheduler mode, should be one of
"epoch"
or"batch"
, default isNone
. IfNone
and object is instance ofBatchScheduler
orOneCycleLRWithWarmup
then will be used"batch"
otherwise -"epoch"
.loader_key – loader name to look after for ReduceLROnPlateau scheduler
metric_key – metric name to forward to scheduler object, if
None
then will be used main metric specified in experiment.
Examples:
import torch from torch.utils.data import DataLoader, TensorDataset from catalyst import dl # sample data num_users, num_features, num_items = int(1e4), int(1e1), 10 X = torch.rand(num_users, num_features) y = (torch.rand(num_users, num_items) > 0.5).to(torch.float32) # pytorch loaders dataset = TensorDataset(X, y) loader = DataLoader(dataset, batch_size=32, num_workers=1) loaders = {"train": loader, "valid": loader} # model, criterion, optimizer, scheduler model = torch.nn.Linear(num_features, num_items) criterion = torch.nn.BCEWithLogitsLoss() optimizer = torch.optim.Adam(model.parameters()) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [2]) # model training runner = dl.SupervisedRunner( input_key="features", output_key="logits", target_key="targets", loss_key="loss" ) runner.train( model=model, criterion=criterion, optimizer=optimizer, scheduler=scheduler, loaders=loaders, num_epochs=3, verbose=True, callbacks=[ dl.BatchTransformCallback( transform=torch.sigmoid, scope="on_batch_end", input_key="logits", output_key="scores" ), dl.CriterionCallback( input_key="logits", target_key="targets", metric_key="loss" ), dl.AUCCallback(input_key="scores", target_key="targets"), dl.HitrateCallback( input_key="scores", target_key="targets", topk_args=(1, 3, 5) ), dl.MRRCallback(input_key="scores", target_key="targets", topk_args=(1, 3, 5)), dl.MAPCallback(input_key="scores", target_key="targets", topk_args=(1, 3, 5)), dl.NDCGCallback(input_key="scores", target_key="targets", topk_args=(1, 3, 5)), dl.OptimizerCallback(metric_key="loss"), dl.SchedulerCallback(), dl.CheckpointCallback( logdir="./logs", loader_key="valid", metric_key="loss", minimize=True ), ] )
Note
Please follow the minimal examples sections for more use cases.
-
__init__
(scheduler_key: Optional[str] = None, mode: Optional[str] = None, loader_key: Optional[str] = None, metric_key: Optional[str] = None)[source]¶ Init.
Scheduler – LRFinder¶
-
class
catalyst.callbacks.scheduler.
LRFinder
(final_lr: float, scale: str = 'log', num_steps: Optional[int] = None, optimizer_key: Optional[str] = None)[source]¶ Bases:
catalyst.callbacks.scheduler.ILRUpdater
Helps you find an optimal learning rate for a model, as per suggestion of Cyclical Learning Rates for Training Neural Networks paper. Learning rate is increased in linear or log scale, depending on user input.
See How Do You Find A Good Learning Rate article for details.
-
__init__
(final_lr: float, scale: str = 'log', num_steps: Optional[int] = None, optimizer_key: Optional[str] = None)[source]¶ - Parameters
final_lr – final learning rate to try with
scale – learning rate increasing scale (“log” or “linear”)
num_steps – number of batches to try, if None - whole loader would be used.
optimizer_key – which optimizer key to use for learning rate scheduling
-
Tracing¶
-
class
catalyst.callbacks.tracing.
TracingCallback
(input_key: Union[str, List[str]], logdir: Optional[Union[str, pathlib.Path]] = None, filename: str = 'traced_model.pth', method_name: str = 'forward')[source]¶ Bases:
catalyst.core.callback.Callback
Callback for model tracing.
- Parameters
input_key – input key from
runner.batch
to use for model tracinglogdir – path to folder for saving
filename – filename
method_name – Model’s method name that will be used as entrypoint during tracing
Example
import os import torch from torch import nn from torch.utils.data import DataLoader from catalyst import dl from catalyst.data import ToTensor from catalyst.contrib.datasets import MNIST from catalyst.contrib.nn.modules import Flatten loaders = { "train": DataLoader( MNIST( os.getcwd(), train=False, download=True, transform=ToTensor() ), batch_size=32, ), "valid": DataLoader( MNIST( os.getcwd(), train=False, download=True, transform=ToTensor() ), batch_size=32, ), } model = nn.Sequential( Flatten(), nn.Linear(784, 512), nn.ReLU(), nn.Linear(512, 10) ) criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=1e-2) runner = dl.SupervisedRunner() runner.train( model=model, callbacks=[dl.TracingCallback(input_key="features", logdir="./logs")], loaders=loaders, criterion=criterion, optimizer=optimizer, num_epochs=1, logdir="./logs", )
-
__init__
(input_key: Union[str, List[str]], logdir: Optional[Union[str, pathlib.Path]] = None, filename: str = 'traced_model.pth', method_name: str = 'forward')[source]¶ Callback for model tracing.
- Parameters
input_key – input key from
runner.batch
to use for model tracinglogdir – path to folder for saving
filename – filename
method_name – Model’s method name that will be used as entrypoint during tracing
Example
import os import torch from torch import nn from torch.utils.data import DataLoader from catalyst import dl from catalyst.data import ToTensor from catalyst.contrib.datasets import MNIST from catalyst.contrib.nn.modules import Flatten loaders = { "train": DataLoader( MNIST( os.getcwd(), train=False, download=True, transform=ToTensor() ), batch_size=32, ), "valid": DataLoader( MNIST( os.getcwd(), train=False, download=True, transform=ToTensor() ), batch_size=32, ), } model = nn.Sequential( Flatten(), nn.Linear(784, 512), nn.ReLU(), nn.Linear(512, 10) ) criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=1e-2) runner = dl.SupervisedRunner() runner.train( model=model, callbacks=[dl.TracingCallback(input_key="features", logdir="./logs")], loaders=loaders, criterion=criterion, optimizer=optimizer, num_epochs=1, logdir="./logs", )
Metric¶
Accuracy - AccuracyCallback¶
-
class
catalyst.callbacks.metrics.accuracy.
AccuracyCallback
(input_key: str, target_key: str, topk_args: Optional[List[int]] = None, num_classes: Optional[int] = None, log_on_batch: bool = True, prefix: Optional[str] = None, suffix: Optional[str] = None)[source]¶ Bases:
catalyst.callbacks.metric.BatchMetricCallback
Accuracy metric callback. Computes multiclass accuracy@topk for the specified values of topk.
- Parameters
input_key – input key to use for metric calculation, specifies our y_pred
target_key – output key to use for metric calculation, specifies our y_true
topk_args – specifies which accuracy@K to log: [1] - accuracy [1, 3] - accuracy at 1 and 3 [1, 3, 5] - accuracy at 1, 3 and 5
num_classes – number of classes to calculate
topk_args
ifaccuracy_args
is Nonelog_on_batch – boolean flag to log computed metrics every batch
prefix – metric prefix
suffix – metric suffix
Examples:
import torch from torch.utils.data import DataLoader, TensorDataset from catalyst import dl # sample data num_samples, num_features, num_classes = int(1e4), int(1e1), 4 X = torch.rand(num_samples, num_features) y = (torch.rand(num_samples,) * num_classes).to(torch.int64) # pytorch loaders dataset = TensorDataset(X, y) loader = DataLoader(dataset, batch_size=32, num_workers=1) loaders = {"train": loader, "valid": loader} # model, criterion, optimizer, scheduler model = torch.nn.Linear(num_features, num_classes) criterion = torch.nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters()) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [2]) # model training runner = dl.SupervisedRunner( input_key="features", output_key="logits", target_key="targets", loss_key="loss" ) runner.train( model=model, criterion=criterion, optimizer=optimizer, scheduler=scheduler, loaders=loaders, logdir="./logdir", num_epochs=3, valid_loader="valid", valid_metric="accuracy03", minimize_valid_metric=False, verbose=True, callbacks=[ dl.AccuracyCallback( input_key="logits", target_key="targets", num_classes=num_classes ), dl.PrecisionRecallF1SupportCallback( input_key="logits", target_key="targets", num_classes=num_classes ), dl.AUCCallback(input_key="logits", target_key="targets"), ], )
Note
Please follow the minimal examples sections for more use cases.
Accuracy - MultilabelAccuracyCallback¶
-
class
catalyst.callbacks.metrics.accuracy.
MultilabelAccuracyCallback
(input_key: str, target_key: str, threshold: Union[float, torch.Tensor] = 0.5, log_on_batch: bool = True, prefix: Optional[str] = None, suffix: Optional[str] = None)[source]¶ Bases:
catalyst.callbacks.metric.BatchMetricCallback
Multilabel accuracy metric callback. Computes multilabel accuracy@topk for the specified values of topk.
- Parameters
input_key – input key to use for metric calculation, specifies our y_pred
target_key – output key to use for metric calculation, specifies our y_true
threshold – thresholds for model scores
log_on_batch – boolean flag to log computed metrics every batch
prefix – metric prefix
suffix – metric suffix
Examples:
import torch from torch.utils.data import DataLoader, TensorDataset from catalyst import dl # sample data num_samples, num_features, num_classes = int(1e4), int(1e1), 4 X = torch.rand(num_samples, num_features) y = (torch.rand(num_samples, num_classes) > 0.5).to(torch.float32) # pytorch loaders dataset = TensorDataset(X, y) loader = DataLoader(dataset, batch_size=32, num_workers=1) loaders = {"train": loader, "valid": loader} # model, criterion, optimizer, scheduler model = torch.nn.Linear(num_features, num_classes) criterion = torch.nn.BCEWithLogitsLoss() optimizer = torch.optim.Adam(model.parameters()) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [2]) # model training runner = dl.SupervisedRunner( input_key="features", output_key="logits", target_key="targets", loss_key="loss" ) runner.train( model=model, criterion=criterion, optimizer=optimizer, scheduler=scheduler, loaders=loaders, logdir="./logdir", num_epochs=3, valid_loader="valid", valid_metric="accuracy", minimize_valid_metric=False, verbose=True, callbacks=[ dl.AUCCallback(input_key="logits", target_key="targets"), dl.MultilabelAccuracyCallback( input_key="logits", target_key="targets", threshold=0.5 ) ]
Note
Please follow the minimal examples sections for more use cases.
AUCCallback¶
-
class
catalyst.callbacks.metrics.auc.
AUCCallback
(input_key: str, target_key: str, prefix: Optional[str] = None, suffix: Optional[str] = None)[source]¶ Bases:
catalyst.callbacks.metric.LoaderMetricCallback
ROC-AUC metric callback.
- Parameters
input_key – input key to use for auc calculation, specifies our
y_true
.target_key – output key to use for auc calculation, specifies our
y_pred
.prefix – metric prefix
suffix – metric suffix
Examples:
import torch from torch.utils.data import DataLoader, TensorDataset from catalyst import dl # sample data num_samples, num_features, num_classes = int(1e4), int(1e1), 4 X = torch.rand(num_samples, num_features) y = (torch.rand(num_samples,) * num_classes).to(torch.int64) # pytorch loaders dataset = TensorDataset(X, y) loader = DataLoader(dataset, batch_size=32, num_workers=1) loaders = {"train": loader, "valid": loader} # model, criterion, optimizer, scheduler model = torch.nn.Linear(num_features, num_classes) criterion = torch.nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters()) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [2]) # model training runner = dl.SupervisedRunner( input_key="features", output_key="logits", target_key="targets", loss_key="loss" ) runner.train( model=model, criterion=criterion, optimizer=optimizer, scheduler=scheduler, loaders=loaders, logdir="./logdir", num_epochs=3, valid_loader="valid", valid_metric="accuracy03", minimize_valid_metric=False, verbose=True, callbacks=[ dl.AccuracyCallback( input_key="logits", target_key="targets", num_classes=num_classes ), dl.PrecisionRecallF1SupportCallback( input_key="logits", target_key="targets", num_classes=num_classes ), dl.AUCCallback(input_key="logits", target_key="targets"), ], )
Note
Please follow the minimal examples sections for more use cases.
Classification – PrecisionRecallF1SupportCallback¶
-
class
catalyst.callbacks.metrics.classification.
PrecisionRecallF1SupportCallback
(input_key: str, target_key: str, num_classes: int, zero_division: int = 0, log_on_batch: bool = True, prefix: Optional[str] = None, suffix: Optional[str] = None)[source]¶ Bases:
catalyst.callbacks.metric.BatchMetricCallback
Multiclass PrecisionRecallF1Support metric callback.
- Parameters
input_key – input key to use for metric calculation, specifies our y_pred
target_key – output key to use for metric calculation, specifies our y_true
num_classes – number of classes
zero_division – value to set in case of zero division during metrics (precision, recall) computation; should be one of 0 or 1
log_on_batch – boolean flag to log computed metrics every batch
prefix – metric prefix
suffix – metric suffix
Examples:
import torch from torch.utils.data import DataLoader, TensorDataset from catalyst import dl # sample data num_samples, num_features, num_classes = int(1e4), int(1e1), 4 X = torch.rand(num_samples, num_features) y = (torch.rand(num_samples,) * num_classes).to(torch.int64) # pytorch loaders dataset = TensorDataset(X, y) loader = DataLoader(dataset, batch_size=32, num_workers=1) loaders = {"train": loader, "valid": loader} # model, criterion, optimizer, scheduler model = torch.nn.Linear(num_features, num_classes) criterion = torch.nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters()) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [2]) # model training runner = dl.SupervisedRunner( input_key="features", output_key="logits", target_key="targets", loss_key="loss" ) runner.train( model=model, criterion=criterion, optimizer=optimizer, scheduler=scheduler, loaders=loaders, logdir="./logdir", num_epochs=3, valid_loader="valid", valid_metric="accuracy03", minimize_valid_metric=False, verbose=True, callbacks=[ dl.AccuracyCallback( input_key="logits", target_key="targets", num_classes=num_classes ), dl.PrecisionRecallF1SupportCallback( input_key="logits", target_key="targets", num_classes=num_classes ), dl.AUCCallback(input_key="logits", target_key="targets"), ], )
Note
Please follow the minimal examples sections for more use cases.
Classification – MultilabelPrecisionRecallF1SupportCallback¶
-
class
catalyst.callbacks.metrics.classification.
MultilabelPrecisionRecallF1SupportCallback
(input_key: str, target_key: str, num_classes: int, zero_division: int = 0, log_on_batch: bool = True, prefix: Optional[str] = None, suffix: Optional[str] = None)[source]¶ Bases:
catalyst.callbacks.metric.BatchMetricCallback
Multilabel PrecisionRecallF1Support metric callback.
- Parameters
input_key – input key to use for metric calculation, specifies our y_pred
target_key – output key to use for metric calculation, specifies our y_true
num_classes – number of classes
zero_division – value to set in case of zero division during metrics (precision, recall) computation; should be one of 0 or 1
log_on_batch – boolean flag to log computed metrics every batch
prefix – metric prefix
suffix – metric suffix
Examples:
import torch from torch.utils.data import DataLoader, TensorDataset from catalyst import dl # sample data num_samples, num_features, num_classes = int(1e4), int(1e1), 4 X = torch.rand(num_samples, num_features) y = (torch.rand(num_samples, num_classes) > 0.5).to(torch.float32) # pytorch loaders dataset = TensorDataset(X, y) loader = DataLoader(dataset, batch_size=32, num_workers=1) loaders = {"train": loader, "valid": loader} # model, criterion, optimizer, scheduler model = torch.nn.Linear(num_features, num_classes) criterion = torch.nn.BCEWithLogitsLoss() optimizer = torch.optim.Adam(model.parameters()) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [2]) # model training runner = dl.SupervisedRunner( input_key="features", output_key="logits", target_key="targets", loss_key="loss" ) runner.train( model=model, criterion=criterion, optimizer=optimizer, scheduler=scheduler, loaders=loaders, logdir="./logdir", num_epochs=3, valid_loader="valid", valid_metric="accuracy", minimize_valid_metric=False, verbose=True, callbacks=[ dl.BatchTransformCallback( transform=torch.sigmoid, scope="on_batch_end", input_key="logits", output_key="scores" ), dl.AUCCallback(input_key="scores", target_key="targets"), dl.MultilabelAccuracyCallback( input_key="scores", target_key="targets", threshold=0.5 ), dl.MultilabelPrecisionRecallF1SupportCallback( input_key="scores", target_key="targets", num_classes=num_classes ), ] )
Note
Please follow the minimal examples sections for more use cases.
CMCScoreCallback¶
-
class
catalyst.callbacks.metrics.cmc_score.
CMCScoreCallback
(embeddings_key: str, labels_key: str, is_query_key: str, topk_args: Optional[List[int]] = None, prefix: Optional[str] = None, suffix: Optional[str] = None)[source]¶ Bases:
catalyst.callbacks.metric.LoaderMetricCallback
Cumulative Matching Characteristics callback.
This callback was designed to count cumulative matching characteristics. If current object is from query your dataset should output True in is_query_key and false if current object is from gallery. You can see QueryGalleryDataset in catalyst.contrib.datasets.metric_learning for more information. On batch end callback accumulate all embeddings
- Parameters
embeddings_key – embeddings key in output dict
labels_key – labels key in output dict
is_query_key – bool key True if current object is from query
topk_args – specifies which cmc@K to log. [1] - cmc@1 [1, 3] - cmc@1 and cmc@3 [1, 3, 5] - cmc@1, cmc@3 and cmc@5
prefix – metric prefix
suffix – metric suffix
Note
You should use it with ControlFlowCallback and add all query/gallery sets to loaders. Loaders should contain “is_query” and “label” key.
Examples:
import os from torch.optim import Adam from torch.utils.data import DataLoader from catalyst import data, dl from catalyst.contrib import datasets, models, nn from catalyst.data.transforms import Compose, Normalize, ToTensor # 1. train and valid loaders transforms = Compose([ToTensor(), Normalize((0.1307,), (0.3081,))]) train_dataset = datasets.MnistMLDataset( root=os.getcwd(), download=True, transform=transforms ) sampler = data.BalanceBatchSampler(labels=train_dataset.get_labels(), p=5, k=10) train_loader = DataLoader( dataset=train_dataset, sampler=sampler, batch_size=sampler.batch_size ) valid_dataset = datasets.MnistQGDataset( root=os.getcwd(), transform=transforms, gallery_fraq=0.2 ) valid_loader = DataLoader(dataset=valid_dataset, batch_size=1024) # 2. model and optimizer model = models.MnistSimpleNet(out_features=16) optimizer = Adam(model.parameters(), lr=0.001) # 3. criterion with triplets sampling sampler_inbatch = data.HardTripletsSampler(norm_required=False) criterion = nn.TripletMarginLossWithSampler(margin=0.5, sampler_inbatch=sampler_inbatch) # 4. training with catalyst Runner class CustomRunner(dl.SupervisedRunner): def handle_batch(self, batch) -> None: if self.is_train_loader: images, targets = batch["features"].float(), batch["targets"].long() features = self.model(images) self.batch = {"embeddings": features, "targets": targets,} else: images, targets, is_query = batch["features"].float(), batch["targets"].long(), batch["is_query"].bool() features = self.model(images) self.batch = { "embeddings": features, "targets": targets, "is_query": is_query } callbacks = [ dl.ControlFlowCallback( dl.CriterionCallback( input_key="embeddings", target_key="targets", metric_key="loss" ), loaders="train", ), dl.ControlFlowCallback( dl.CMCScoreCallback( embeddings_key="embeddings", labels_key="targets", is_query_key="is_query", topk_args=[1], ), loaders="valid", ), dl.PeriodicLoaderCallback( valid_loader_key="valid", valid_metric_key="cmc01", minimize=False, valid=2 ), ] runner = CustomRunner(input_key="features", output_key="embeddings") runner.train( model=model, criterion=criterion, optimizer=optimizer, callbacks=callbacks, loaders={"train": train_loader, "valid": valid_loader}, verbose=False, logdir="./logs", valid_loader="valid", valid_metric="cmc01", minimize_valid_metric=False, num_epochs=10, )
Note
Please follow the minimal examples sections for more use cases.
ReidCMCScoreCallback¶
-
class
catalyst.callbacks.metrics.cmc_score.
ReidCMCScoreCallback
(embeddings_key: str, pids_key: str, cids_key: str, is_query_key: str, topk_args: Optional[List[int]] = None, prefix: Optional[str] = None, suffix: Optional[str] = None)[source]¶ Bases:
catalyst.callbacks.metric.LoaderMetricCallback
Cumulative Matching Characteristics callback for reID case. More information about cmc-based callbacks in CMCScoreCallback’s docs.
- Parameters
embeddings_key – embeddings key in output dict
pids_key – pids key in output dict
cids_key – cids key in output dict
is_query_key – bool key True if current object is from query
topk_args – specifies which cmc@K to log. [1] - cmc@1 [1, 3] - cmc@1 and cmc@3 [1, 3, 5] - cmc@1, cmc@3 and cmc@5
prefix – metric prefix
suffix – metric suffix
ConfusionMatrixCallback¶
-
class
catalyst.callbacks.metrics.confusion_matrix.
ConfusionMatrixCallback
(input_key: str, target_key: str, prefix: Optional[str] = None, class_names: Optional[List[str]] = None, num_classes: Optional[int] = None, normalized: bool = False, plot_params: Optional[Dict] = None)[source]¶ Bases:
catalyst.core.callback.Callback
Callback to plot your confusion matrix to the loggers.
- Parameters
input_key – key to use from
runner.batch
, specifies oury_pred
target_key – key to use from
runner.batch
, specifies oury_true
prefix – plot name for monitoring tools
class_names – list with class names
num_classes – number of classes
normalized – boolean flag for confusion matrix normalization
plot_params – extra params for plt.figure rendering
Note
catalyst[ml] required for this callback
Examples:
import torch from torch.utils.data import DataLoader, TensorDataset from catalyst import dl # sample data num_samples, num_features, num_classes = int(1e4), int(1e1), 4 X = torch.rand(num_samples, num_features) y = (torch.rand(num_samples,) * num_classes).to(torch.int64) # pytorch loaders dataset = TensorDataset(X, y) loader = DataLoader(dataset, batch_size=32, num_workers=1) loaders = {"train": loader, "valid": loader} # model, criterion, optimizer, scheduler model = torch.nn.Linear(num_features, num_classes) criterion = torch.nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters()) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [2]) # model training runner = dl.SupervisedRunner( input_key="features", output_key="logits", target_key="targets", loss_key="loss" ) runner.train( model=model, criterion=criterion, optimizer=optimizer, scheduler=scheduler, loaders=loaders, logdir="./logdir", num_epochs=3, valid_loader="valid", valid_metric="accuracy03", minimize_valid_metric=False, verbose=True, callbacks=[ dl.AccuracyCallback( input_key="logits", target_key="targets", num_classes=num_classes ), dl.PrecisionRecallF1SupportCallback( input_key="logits", target_key="targets", num_classes=num_classes ), dl.AUCCallback(input_key="logits", target_key="targets"), dl.ConfusionMatrixCallback( input_key="logits", target_key="targets", num_classes=num_classes ), ], )
Note
Please follow the minimal examples sections for more use cases.
FunctionalMetricCallback¶
-
class
catalyst.callbacks.metrics.functional_metric.
FunctionalMetricCallback
(input_key: Union[str, Iterable[str], Dict[str, str]], target_key: Union[str, Iterable[str], Dict[str, str]], metric_fn: Callable, metric_key: str, compute_on_call: bool = True, log_on_batch: bool = True, prefix: Optional[str] = None, suffix: Optional[str] = None)[source]¶ Bases:
catalyst.callbacks.metric.FunctionalBatchMetricCallback
- Parameters
input_key – input key to use for metric calculation, specifies our y_pred
target_key – output key to use for metric calculation, specifies our y_true
metric_fn – metric function, that get outputs, targets and return score as torch.Tensor
metric_key – key to store computed metric in
runner.batch_metrics
dictionarycompute_on_call – Computes and returns metric value during metric call. Used for per-batch logging. default: True
log_on_batch – boolean flag to log computed metrics every batch
prefix – metric prefix
suffix – metric suffix
RecSys – HitrateCallback¶
-
class
catalyst.callbacks.metrics.recsys.
HitrateCallback
(input_key: str, target_key: str, topk_args: Optional[List[int]] = None, log_on_batch: bool = True, prefix: Optional[str] = None, suffix: Optional[str] = None)[source]¶ Bases:
catalyst.callbacks.metric.BatchMetricCallback
Hitrate metric callback. Computes HR@topk for the specified values of topk.
- Parameters
input_key – input key to use for metric calculation, specifies our y_pred
target_key – output key to use for metric calculation, specifies our y_true
topk_args – specifies which HR@K to log: [1] - HR [1, 3] - HR at 1 and 3 [1, 3, 5] - HR at 1, 3 and 5
log_on_batch – boolean flag to log computed metrics every batch
prefix – metric prefix
suffix – metric suffix
Examples:
import torch from torch.utils.data import DataLoader, TensorDataset from catalyst import dl # sample data num_users, num_features, num_items = int(1e4), int(1e1), 10 X = torch.rand(num_users, num_features) y = (torch.rand(num_users, num_items) > 0.5).to(torch.float32) # pytorch loaders dataset = TensorDataset(X, y) loader = DataLoader(dataset, batch_size=32, num_workers=1) loaders = {"train": loader, "valid": loader} # model, criterion, optimizer, scheduler model = torch.nn.Linear(num_features, num_items) criterion = torch.nn.BCEWithLogitsLoss() optimizer = torch.optim.Adam(model.parameters()) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [2]) # model training runner = dl.SupervisedRunner( input_key="features", output_key="logits", target_key="targets", loss_key="loss" ) runner.train( model=model, criterion=criterion, optimizer=optimizer, scheduler=scheduler, loaders=loaders, num_epochs=3, verbose=True, callbacks=[ dl.BatchTransformCallback( transform=torch.sigmoid, scope="on_batch_end", input_key="logits", output_key="scores" ), dl.CriterionCallback( input_key="logits", target_key="targets", metric_key="loss" ), dl.AUCCallback(input_key="scores", target_key="targets"), dl.HitrateCallback( input_key="scores", target_key="targets", topk_args=(1, 3, 5) ), dl.MRRCallback(input_key="scores", target_key="targets", topk_args=(1, 3, 5)), dl.MAPCallback(input_key="scores", target_key="targets", topk_args=(1, 3, 5)), dl.NDCGCallback(input_key="scores", target_key="targets", topk_args=(1, 3, 5)), dl.OptimizerCallback(metric_key="loss"), dl.SchedulerCallback(), dl.CheckpointCallback( logdir="./logs", loader_key="valid", metric_key="loss", minimize=True ), ] )
Note
Please follow the minimal examples sections for more use cases.
RecSys – MAPCallback¶
-
class
catalyst.callbacks.metrics.recsys.
MAPCallback
(input_key: str, target_key: str, topk_args: Optional[List[int]] = None, log_on_batch: bool = True, prefix: Optional[str] = None, suffix: Optional[str] = None)[source]¶ Bases:
catalyst.callbacks.metric.BatchMetricCallback
MAP metric callback. Computes MAP@topk for the specified values of topk.
- Parameters
input_key – input key to use for metric calculation, specifies our y_pred
target_key – output key to use for metric calculation, specifies our y_true
prefix – key for the metric’s name
topk_args – specifies which MAP@K to log: [1] - MAP [1, 3] - MAP at 1 and 3 [1, 3, 5] - MAP at 1, 3 and 5
log_on_batch – boolean flag to log computed metrics every batch
prefix – metric prefix
suffix – metric suffix
Examples:
import torch from torch.utils.data import DataLoader, TensorDataset from catalyst import dl # sample data num_users, num_features, num_items = int(1e4), int(1e1), 10 X = torch.rand(num_users, num_features) y = (torch.rand(num_users, num_items) > 0.5).to(torch.float32) # pytorch loaders dataset = TensorDataset(X, y) loader = DataLoader(dataset, batch_size=32, num_workers=1) loaders = {"train": loader, "valid": loader} # model, criterion, optimizer, scheduler model = torch.nn.Linear(num_features, num_items) criterion = torch.nn.BCEWithLogitsLoss() optimizer = torch.optim.Adam(model.parameters()) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [2]) # model training runner = dl.SupervisedRunner( input_key="features", output_key="logits", target_key="targets", loss_key="loss" ) runner.train( model=model, criterion=criterion, optimizer=optimizer, scheduler=scheduler, loaders=loaders, num_epochs=3, verbose=True, callbacks=[ dl.BatchTransformCallback( transform=torch.sigmoid, scope="on_batch_end", input_key="logits", output_key="scores" ), dl.CriterionCallback( input_key="logits", target_key="targets", metric_key="loss" ), dl.AUCCallback(input_key="scores", target_key="targets"), dl.HitrateCallback( input_key="scores", target_key="targets", topk_args=(1, 3, 5) ), dl.MRRCallback(input_key="scores", target_key="targets", topk_args=(1, 3, 5)), dl.MAPCallback(input_key="scores", target_key="targets", topk_args=(1, 3, 5)), dl.NDCGCallback(input_key="scores", target_key="targets", topk_args=(1, 3, 5)), dl.OptimizerCallback(metric_key="loss"), dl.SchedulerCallback(), dl.CheckpointCallback( logdir="./logs", loader_key="valid", metric_key="loss", minimize=True ), ] )
Note
Please follow the minimal examples sections for more use cases.
RecSys – MRRCallback¶
-
class
catalyst.callbacks.metrics.recsys.
MRRCallback
(input_key: str, target_key: str, topk_args: Optional[List[int]] = None, log_on_batch: bool = True, prefix: Optional[str] = None, suffix: Optional[str] = None)[source]¶ Bases:
catalyst.callbacks.metric.BatchMetricCallback
MRR metric callback. Computes MRR@topk for the specified values of topk.
- Parameters
input_key – input key to use for metric calculation, specifies our y_pred
target_key – output key to use for metric calculation, specifies our y_true
prefix – key for the metric’s name
topk_args – specifies which MRR@K to log: [1] - MRR [1, 3] - MRR at 1 and 3 [1, 3, 5] - MRR at 1, 3 and 5
log_on_batch – boolean flag to log computed metrics every batch
prefix – metric prefix
suffix – metric suffix
Examples:
import torch from torch.utils.data import DataLoader, TensorDataset from catalyst import dl # sample data num_users, num_features, num_items = int(1e4), int(1e1), 10 X = torch.rand(num_users, num_features) y = (torch.rand(num_users, num_items) > 0.5).to(torch.float32) # pytorch loaders dataset = TensorDataset(X, y) loader = DataLoader(dataset, batch_size=32, num_workers=1) loaders = {"train": loader, "valid": loader} # model, criterion, optimizer, scheduler model = torch.nn.Linear(num_features, num_items) criterion = torch.nn.BCEWithLogitsLoss() optimizer = torch.optim.Adam(model.parameters()) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [2]) # model training runner = dl.SupervisedRunner( input_key="features", output_key="logits", target_key="targets", loss_key="loss" ) runner.train( model=model, criterion=criterion, optimizer=optimizer, scheduler=scheduler, loaders=loaders, num_epochs=3, verbose=True, callbacks=[ dl.BatchTransformCallback( transform=torch.sigmoid, scope="on_batch_end", input_key="logits", output_key="scores" ), dl.CriterionCallback( input_key="logits", target_key="targets", metric_key="loss" ), dl.AUCCallback(input_key="scores", target_key="targets"), dl.HitrateCallback( input_key="scores", target_key="targets", topk_args=(1, 3, 5) ), dl.MRRCallback(input_key="scores", target_key="targets", topk_args=(1, 3, 5)), dl.MAPCallback(input_key="scores", target_key="targets", topk_args=(1, 3, 5)), dl.NDCGCallback(input_key="scores", target_key="targets", topk_args=(1, 3, 5)), dl.OptimizerCallback(metric_key="loss"), dl.SchedulerCallback(), dl.CheckpointCallback( logdir="./logs", loader_key="valid", metric_key="loss", minimize=True ), ] )
Note
Please follow the minimal examples sections for more use cases.
RecSys – NDCGCallback¶
-
class
catalyst.callbacks.metrics.recsys.
NDCGCallback
(input_key: str, target_key: str, topk_args: Optional[List[int]] = None, log_on_batch: bool = True, prefix: Optional[str] = None, suffix: Optional[str] = None)[source]¶ Bases:
catalyst.callbacks.metric.BatchMetricCallback
NDCG metric callback. Computes NDCG@topk for the specified values of topk.
- Parameters
input_key – input key to use for metric calculation, specifies our y_pred
target_key – output key to use for metric calculation, specifies our y_true
prefix – key for the metric’s name
topk_args – specifies which NDCG@K to log: [1] - NDCG [1, 3] - NDCG at 1 and 3 [1, 3, 5] - NDCG at 1, 3 and 5
log_on_batch – boolean flag to log computed metrics every batch
prefix – metric prefix
suffix – metric suffix
Examples:
import torch from torch.utils.data import DataLoader, TensorDataset from catalyst import dl # sample data num_users, num_features, num_items = int(1e4), int(1e1), 10 X = torch.rand(num_users, num_features) y = (torch.rand(num_users, num_items) > 0.5).to(torch.float32) # pytorch loaders dataset = TensorDataset(X, y) loader = DataLoader(dataset, batch_size=32, num_workers=1) loaders = {"train": loader, "valid": loader} # model, criterion, optimizer, scheduler model = torch.nn.Linear(num_features, num_items) criterion = torch.nn.BCEWithLogitsLoss() optimizer = torch.optim.Adam(model.parameters()) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [2]) # model training runner = dl.SupervisedRunner( input_key="features", output_key="logits", target_key="targets", loss_key="loss" ) runner.train( model=model, criterion=criterion, optimizer=optimizer, scheduler=scheduler, loaders=loaders, num_epochs=3, verbose=True, callbacks=[ dl.BatchTransformCallback( transform=torch.sigmoid, scope="on_batch_end", input_key="logits", output_key="scores" ), dl.CriterionCallback( input_key="logits", target_key="targets", metric_key="loss" ), dl.AUCCallback(input_key="scores", target_key="targets"), dl.HitrateCallback( input_key="scores", target_key="targets", topk_args=(1, 3, 5) ), dl.MRRCallback(input_key="scores", target_key="targets", topk_args=(1, 3, 5)), dl.MAPCallback(input_key="scores", target_key="targets", topk_args=(1, 3, 5)), dl.NDCGCallback(input_key="scores", target_key="targets", topk_args=(1, 3, 5)), dl.OptimizerCallback(metric_key="loss"), dl.SchedulerCallback(), dl.CheckpointCallback( logdir="./logs", loader_key="valid", metric_key="loss", minimize=True ), ] )
Note
Please follow the minimal examples sections for more use cases.
Segmentation – DiceCallback¶
-
class
catalyst.callbacks.metrics.segmentation.
DiceCallback
(input_key: str, target_key: str, class_dim: int = 1, weights: Optional[List[float]] = None, class_names: Optional[List[str]] = None, threshold: Optional[float] = None, log_on_batch: bool = True, prefix: Optional[str] = None, suffix: Optional[str] = None)[source]¶ Bases:
catalyst.callbacks.metric.BatchMetricCallback
Dice metric callback.
- Parameters
input_key – input key to use for metric calculation, specifies our y_pred
target_key – output key to use for metric calculation, specifies our y_true
class_dim – indicates class dimension (K) for
outputs
andtargets
tensors (default = 1)weights – class weights
class_names – class names
threshold – threshold for outputs binarization
log_on_batch – boolean flag to log computed metrics every batch
prefix – metric prefix
suffix – metric suffix
Examples:
import os import torch from torch import nn from torch.utils.data import DataLoader from catalyst import dl from catalyst.data import ToTensor from catalyst.contrib.datasets import MNIST from catalyst.contrib.nn import IoULoss model = nn.Sequential( nn.Conv2d(1, 1, 3, 1, 1), nn.ReLU(), nn.Conv2d(1, 1, 3, 1, 1), nn.Sigmoid(), ) criterion = IoULoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.02) loaders = { "train": DataLoader( MNIST(os.getcwd(), train=True, download=True, transform=ToTensor()), batch_size=32 ), "valid": DataLoader( MNIST(os.getcwd(), train=False, download=True, transform=ToTensor()), batch_size=32 ), } class CustomRunner(dl.SupervisedRunner): def handle_batch(self, batch): x = batch[self._input_key] x_noise = (x + torch.rand_like(x)).clamp_(0, 1) x_ = self.model(x_noise) self.batch = {self._input_key: x, self._output_key: x_, self._target_key: x} runner = CustomRunner( input_key="features", output_key="scores", target_key="targets", loss_key="loss" ) # model training runner.train( model=model, criterion=criterion, optimizer=optimizer, loaders=loaders, num_epochs=1, callbacks=[ dl.IOUCallback(input_key="scores", target_key="targets"), dl.DiceCallback(input_key="scores", target_key="targets"), dl.TrevskyCallback(input_key="scores", target_key="targets", alpha=0.2), ], logdir="./logdir", valid_loader="valid", valid_metric="loss", minimize_valid_metric=True, verbose=True, )
Note
Please follow the minimal examples sections for more use cases.
Segmentation – IOUCallback¶
-
class
catalyst.callbacks.metrics.segmentation.
IOUCallback
(input_key: str, target_key: str, class_dim: int = 1, weights: Optional[List[float]] = None, class_names: Optional[List[str]] = None, threshold: Optional[float] = None, log_on_batch: bool = True, prefix: Optional[str] = None, suffix: Optional[str] = None)[source]¶ Bases:
catalyst.callbacks.metric.BatchMetricCallback
IOU metric callback.
- Parameters
input_key – input key to use for metric calculation, specifies our y_pred
target_key – output key to use for metric calculation, specifies our y_true
class_dim – indicates class dimension (K) for
outputs
andtargets
tensors (default = 1)weights – class weights
class_names – class names
threshold – threshold for outputs binarization
log_on_batch – boolean flag to log computed metrics every batch
prefix – metric prefix
suffix – metric suffix
Examples:
import os import torch from torch import nn from torch.utils.data import DataLoader from catalyst import dl from catalyst.data import ToTensor from catalyst.contrib.datasets import MNIST from catalyst.contrib.nn import IoULoss model = nn.Sequential( nn.Conv2d(1, 1, 3, 1, 1), nn.ReLU(), nn.Conv2d(1, 1, 3, 1, 1), nn.Sigmoid(), ) criterion = IoULoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.02) loaders = { "train": DataLoader( MNIST(os.getcwd(), train=True, download=True, transform=ToTensor()), batch_size=32 ), "valid": DataLoader( MNIST(os.getcwd(), train=False, download=True, transform=ToTensor()), batch_size=32 ), } class CustomRunner(dl.SupervisedRunner): def handle_batch(self, batch): x = batch[self._input_key] x_noise = (x + torch.rand_like(x)).clamp_(0, 1) x_ = self.model(x_noise) self.batch = {self._input_key: x, self._output_key: x_, self._target_key: x} runner = CustomRunner( input_key="features", output_key="scores", target_key="targets", loss_key="loss" ) # model training runner.train( model=model, criterion=criterion, optimizer=optimizer, loaders=loaders, num_epochs=1, callbacks=[ dl.IOUCallback(input_key="scores", target_key="targets"), dl.DiceCallback(input_key="scores", target_key="targets"), dl.TrevskyCallback(input_key="scores", target_key="targets", alpha=0.2), ], logdir="./logdir", valid_loader="valid", valid_metric="loss", minimize_valid_metric=True, verbose=True, )
Note
Please follow the minimal examples sections for more use cases.
Segmentation – TrevskyCallback¶
-
class
catalyst.callbacks.metrics.segmentation.
TrevskyCallback
(input_key: str, target_key: str, alpha: float, beta: Optional[float] = None, class_dim: int = 1, weights: Optional[List[float]] = None, class_names: Optional[List[str]] = None, threshold: Optional[float] = None, log_on_batch: bool = True, prefix: Optional[str] = None, suffix: Optional[str] = None)[source]¶ Bases:
catalyst.callbacks.metric.BatchMetricCallback
Trevsky metric callback.
- Parameters
input_key – input key to use for metric calculation, specifies our y_pred
target_key – output key to use for metric calculation, specifies our y_true
alpha – false negative coefficient, bigger alpha bigger penalty for false negative. if beta is None, alpha must be in (0, 1)
beta – false positive coefficient, bigger alpha bigger penalty for false positive. Must be in (0, 1), if None beta = (1 - alpha)
class_dim – indicates class dimension (K) for
outputs
andtargets
tensors (default = 1)weights – class weights
class_names – class names
threshold – threshold for outputs binarization
log_on_batch – boolean flag to log computed metrics every batch
prefix – metric prefix
suffix – metric suffix
Examples:
import os import torch from torch import nn from torch.utils.data import DataLoader from catalyst import dl from catalyst.data import ToTensor from catalyst.contrib.datasets import MNIST from catalyst.contrib.nn import IoULoss model = nn.Sequential( nn.Conv2d(1, 1, 3, 1, 1), nn.ReLU(), nn.Conv2d(1, 1, 3, 1, 1), nn.Sigmoid(), ) criterion = IoULoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.02) loaders = { "train": DataLoader( MNIST(os.getcwd(), train=True, download=True, transform=ToTensor()), batch_size=32 ), "valid": DataLoader( MNIST(os.getcwd(), train=False, download=True, transform=ToTensor()), batch_size=32 ), } class CustomRunner(dl.SupervisedRunner): def handle_batch(self, batch): x = batch[self._input_key] x_noise = (x + torch.rand_like(x)).clamp_(0, 1) x_ = self.model(x_noise) self.batch = {self._input_key: x, self._output_key: x_, self._target_key: x} runner = CustomRunner( input_key="features", output_key="scores", target_key="targets", loss_key="loss" ) # model training runner.train( model=model, criterion=criterion, optimizer=optimizer, loaders=loaders, num_epochs=1, callbacks=[ dl.IOUCallback(input_key="scores", target_key="targets"), dl.DiceCallback(input_key="scores", target_key="targets"), dl.TrevskyCallback(input_key="scores", target_key="targets", alpha=0.2), ], logdir="./logdir", valid_loader="valid", valid_metric="loss", minimize_valid_metric=True, verbose=True, )
Note
Please follow the minimal examples sections for more use cases.
-
__init__
(input_key: str, target_key: str, alpha: float, beta: Optional[float] = None, class_dim: int = 1, weights: Optional[List[float]] = None, class_names: Optional[List[str]] = None, threshold: Optional[float] = None, log_on_batch: bool = True, prefix: Optional[str] = None, suffix: Optional[str] = None)[source]¶ Init.
SklearnBatchCallback¶
-
class
catalyst.callbacks.metrics.scikit_learn.
SklearnBatchCallback
(keys: Mapping[str, Any], metric_fn: Union[Callable, str], metric_key: str, log_on_batch: bool = True, **metric_kwargs)[source]¶ Bases:
catalyst.callbacks.metric.FunctionalBatchMetricCallback
SklearnBatchCallback implements an integration of batch-based Sklearn metrics
- Parameters
keys – a dictionary containing: a mapping between
metric_fn
arguments and keys inrunner.batch
other arguments needed formetric_fn
metric_fn – metric function that gets outputs, targets, and other arguments given in
keys
and returns scoremetric_key – key to store computed metric in
runner.batch_metrics
dictionarylog_on_batch – boolean flag to log computed metrics every batch
metric_kwargs – additional parameters for
metric_fn
Note
catalyst[ml] required for this callback
Examples:
import sklearn import torch from torch.utils.data import DataLoader, TensorDataset from catalyst import dl from functools import partial # sample data num_samples, num_features, num_classes = int(1e4), int(1e1), 4 X = torch.rand(num_samples, num_features) y = (torch.rand(num_samples, num_classes) > 0.5).to(torch.float32) # pytorch loaders dataset = TensorDataset(X, y) loader = DataLoader(dataset, batch_size=32, num_workers=1) loaders = {"train": loader, "valid": loader} # model, criterion, optimizer, scheduler model = torch.nn.Linear(num_features, num_classes) criterion = torch.nn.BCEWithLogitsLoss() optimizer = torch.optim.Adam(model.parameters()) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [2]) # model training runner = dl.SupervisedRunner( input_key="features", output_key="logits", target_key="targets", loss_key="loss" ) runner.train( model=model, criterion=criterion, optimizer=optimizer, scheduler=scheduler, loaders=loaders, num_epochs=3, verbose=True, callbacks=[ dl.BatchTransformCallback( input_key="targets", output_key="labels", transform=partial(torch.argmax, dim=1), scope="on_batch_end", ), dl.BatchTransformCallback( input_key="logits", output_key="scores", transform=partial(torch.softmax, dim=1), scope="on_batch_end", ), dl.BatchTransformCallback( input_key="scores", output_key="preds", transform=partial(torch.argmax, dim=1), scope="on_batch_end", ), dl.MultilabelAccuracyCallback( input_key="logits", target_key="targets", threshold=0.5 ), dl.SklearnBatchCallback( keys={"y_pred": "preds", "y_true": "labels"}, metric_fn="f1_score", metric_key="sk_f1", average="macro", zero_division=1, ) ] )
Note
Please follow the minimal examples sections for more use cases.
SklearnLoaderCallback¶
-
class
catalyst.callbacks.metrics.scikit_learn.
SklearnLoaderCallback
(keys: Mapping[str, Any], metric_fn: Union[Callable, str], metric_key: str, **metric_kwargs)[source]¶ Bases:
catalyst.callbacks.metric.LoaderMetricCallback
SklearnLoaderCallback implements an integration of loader-based Sklearn metrics
- Parameters
keys – a mapping between
metric_fn
arguments and keys inrunner.batch
metric_fn – metric function that gets outputs, targets, and other arguments given in
keys
and returns scoremetric_key – key to store computed metric in
runner.batch_metrics
dictionarymetric_kwargs – additional parameters for
metric_fn
Note
catalyst[ml] required for this callback
Examples:
import sklearn import torch from torch.utils.data import DataLoader, TensorDataset from catalyst import dl from functools import partial # sample data num_samples, num_features, num_classes = int(1e4), int(1e1), 4 X = torch.rand(num_samples, num_features) y = (torch.rand(num_samples, num_classes) > 0.5).to(torch.float32) # pytorch loaders dataset = TensorDataset(X, y) loader = DataLoader(dataset, batch_size=32, num_workers=1) loaders = {"train": loader, "valid": loader} # model, criterion, optimizer, scheduler model = torch.nn.Linear(num_features, num_classes) criterion = torch.nn.BCEWithLogitsLoss() optimizer = torch.optim.Adam(model.parameters()) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [2]) # model training runner = dl.SupervisedRunner( input_key="features", output_key="logits", target_key="targets", loss_key="loss" ) runner.train( model=model, criterion=criterion, optimizer=optimizer, scheduler=scheduler, loaders=loaders, num_epochs=3, verbose=True, callbacks=[ dl.BatchTransformCallback( input_key="targets", output_key="labels", transform=partial(torch.argmax, dim=1), scope="on_batch_end", ), dl.BatchTransformCallback( input_key="logits", output_key="scores", transform=partial(torch.softmax, dim=1), scope="on_batch_end", ), dl.BatchTransformCallback( input_key="scores", output_key="preds", transform=partial(torch.argmax, dim=1), scope="on_batch_end", ), dl.MultilabelAccuracyCallback( input_key="logits", target_key="targets", threshold=0.5 ), dl.SklearnLoaderCallback( keys={"y_score": "scores", "y_true": "labels"}, metric_fn="roc_auc_score", metric_key="roc_auc_score", average="macro", multi_class="ovo" ) ] )
Note
Please follow the minimal examples sections for more use cases.