Shortcuts

Source code for catalyst.engines.xla

from typing import Any, Callable, Dict, Optional

import numpy as np

import torch
from torch.utils.data import DataLoader

from catalyst.engines.torch import DeviceEngine
from catalyst.settings import SETTINGS

if SETTINGS.xla_required:
    import torch_xla.core.xla_model as xm
    from torch_xla.distributed.parallel_loader import ParallelLoader
    import torch_xla.distributed.xla_multiprocessing as xmp


[docs]class XLAEngine(DeviceEngine): """XLA SingleTPU training device engine. Examples: .. code-block:: python import os from datetime import datetime import torch from torch import nn, optim from torch.utils.data import DataLoader from catalyst import dl from catalyst.contrib.datasets import CIFAR10 from catalyst.contrib.nn import ResidualBlock from catalyst.data import transforms def conv_block(in_channels, out_channels, pool=False): layers = [ nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True), ] if pool: layers.append(nn.MaxPool2d(2)) return nn.Sequential(*layers) def resnet9(in_channels: int, num_classes: int, size: int = 16): sz, sz2, sz4, sz8 = size, size * 2, size * 4, size * 8 return nn.Sequential( conv_block(in_channels, sz), conv_block(sz, sz2, pool=True), ResidualBlock(nn.Sequential(conv_block(sz2, sz2), conv_block(sz2, sz2))), conv_block(sz2, sz4, pool=True), conv_block(sz4, sz8, pool=True), ResidualBlock(nn.Sequential(conv_block(sz8, sz8), conv_block(sz8, sz8))), nn.Sequential( nn.MaxPool2d(4), nn.Flatten(), nn.Dropout(0.2), nn.Linear(sz8, num_classes) ), ) class CustomRunner(dl.IRunner): def __init__(self, logdir): super().__init__() self._logdir = logdir def get_engine(self): return dl.XLAEngine() def get_loggers(self): return { "console": dl.ConsoleLogger(), "csv": dl.CSVLogger(logdir=self._logdir), "tensorboard": dl.TensorboardLogger(logdir=self._logdir), } @property def stages(self): return ["train"] def get_stage_len(self, stage: str) -> int: return 3 def get_loaders(self, stage: str): transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))] ) train_data = CIFAR10(os.getcwd(), train=False, download=True, transform=transform) valid_data = CIFAR10(os.getcwd(), train=False, download=True, transform=transform) if self.engine.is_ddp: train_sampler = torch.utils.data.distributed.DistributedSampler( train_data, num_replicas=self.engine.world_size, rank=self.engine.rank, shuffle=True ) valid_sampler = torch.utils.data.distributed.DistributedSampler( valid_data, num_replicas=self.engine.world_size, rank=self.engine.rank, shuffle=False ) else: train_sampler = valid_sampler = None return { "train": DataLoader(train_data, batch_size=32, sampler=train_sampler), "valid": DataLoader(valid_data, batch_size=32, sampler=valid_sampler), } def get_model(self, stage: str): model = self.model \ if self.model is not None \ else resnet9(in_channels=3, num_classes=10) return model def get_criterion(self, stage: str): return nn.CrossEntropyLoss() def get_optimizer(self, stage: str, model): return optim.Adam(model.parameters(), lr=1e-3) def get_scheduler(self, stage: str, optimizer): return optim.lr_scheduler.MultiStepLR(optimizer, [5, 8], gamma=0.3) def get_callbacks(self, stage: str): return { "criterion": dl.CriterionCallback( metric_key="loss", input_key="logits", target_key="targets" ), "optimizer": dl.OptimizerCallback(metric_key="loss"), "scheduler": dl.SchedulerCallback(loader_key="valid", metric_key="loss"), "accuracy": dl.AccuracyCallback( input_key="logits", target_key="targets", topk_args=(1, 3, 5) ), "checkpoint": dl.CheckpointCallback( self._logdir, loader_key="valid", metric_key="accuracy", minimize=False, save_n_best=1, ), "tqdm": dl.TqdmCallback(), } def handle_batch(self, batch): x, y = batch logits = self.model(x) self.batch = { "features": x, "targets": y, "logits": logits, } logdir = f"logs/{datetime.now().strftime('%Y%m%d-%H%M%S')}" runner = CustomRunner(logdir) runner.run() """ def __init__(self): """Init.""" super().__init__() self._device = xm.xla_device() def optimizer_step(self, loss, model, optimizer) -> None: """Abstraction over ``optimizer.step()`` step.""" xm.optimizer_step(optimizer, barrier=True)
[docs]class DistributedXLAEngine(DeviceEngine): """Distributed XLA MultiTPU training device engine. Examples: .. code-block:: python import os from datetime import datetime import torch from torch import nn, optim from torch.utils.data import DataLoader from catalyst import dl from catalyst.contrib.datasets import CIFAR10 from catalyst.contrib.nn import ResidualBlock from catalyst.data import transforms def conv_block(in_channels, out_channels, pool=False): layers = [ nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True), ] if pool: layers.append(nn.MaxPool2d(2)) return nn.Sequential(*layers) def resnet9(in_channels: int, num_classes: int, size: int = 16): sz, sz2, sz4, sz8 = size, size * 2, size * 4, size * 8 return nn.Sequential( conv_block(in_channels, sz), conv_block(sz, sz2, pool=True), ResidualBlock(nn.Sequential(conv_block(sz2, sz2), conv_block(sz2, sz2))), conv_block(sz2, sz4, pool=True), conv_block(sz4, sz8, pool=True), ResidualBlock(nn.Sequential(conv_block(sz8, sz8), conv_block(sz8, sz8))), nn.Sequential( nn.MaxPool2d(4), nn.Flatten(), nn.Dropout(0.2), nn.Linear(sz8, num_classes) ), ) class CustomRunner(dl.IRunner): def __init__(self, logdir): super().__init__() self._logdir = logdir def get_engine(self): return dl.DistributedXLAEngine() def get_loggers(self): return { "console": dl.ConsoleLogger(), "csv": dl.CSVLogger(logdir=self._logdir), "tensorboard": dl.TensorboardLogger(logdir=self._logdir), } @property def stages(self): return ["train"] def get_stage_len(self, stage: str) -> int: return 3 def get_loaders(self, stage: str): transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))] ) train_data = CIFAR10(os.getcwd(), train=False, download=True, transform=transform) valid_data = CIFAR10(os.getcwd(), train=False, download=True, transform=transform) if self.engine.is_ddp: train_sampler = torch.utils.data.distributed.DistributedSampler( train_data, num_replicas=self.engine.world_size, rank=self.engine.rank, shuffle=True ) valid_sampler = torch.utils.data.distributed.DistributedSampler( valid_data, num_replicas=self.engine.world_size, rank=self.engine.rank, shuffle=False ) else: train_sampler = valid_sampler = None return { "train": DataLoader(train_data, batch_size=32, sampler=train_sampler), "valid": DataLoader(valid_data, batch_size=32, sampler=valid_sampler), } def get_model(self, stage: str): model = self.model \ if self.model is not None \ else resnet9(in_channels=3, num_classes=10) return model def get_criterion(self, stage: str): return nn.CrossEntropyLoss() def get_optimizer(self, stage: str, model): return optim.Adam(model.parameters(), lr=1e-3) def get_scheduler(self, stage: str, optimizer): return optim.lr_scheduler.MultiStepLR(optimizer, [5, 8], gamma=0.3) def get_callbacks(self, stage: str): return { "criterion": dl.CriterionCallback( metric_key="loss", input_key="logits", target_key="targets" ), "optimizer": dl.OptimizerCallback(metric_key="loss"), "scheduler": dl.SchedulerCallback(loader_key="valid", metric_key="loss"), "accuracy": dl.AccuracyCallback( input_key="logits", target_key="targets", topk_args=(1, 3, 5) ), "checkpoint": dl.CheckpointCallback( self._logdir, loader_key="valid", metric_key="accuracy", minimize=False, save_n_best=1, ), "tqdm": dl.TqdmCallback(), } def handle_batch(self, batch): x, y = batch logits = self.model(x) self.batch = { "features": x, "targets": y, "logits": logits, } logdir = f"logs/{datetime.now().strftime('%Y%m%d-%H%M%S')}" runner = CustomRunner(logdir) runner.run() """ def __init__(self): """Init.""" super().__init__() self._device = None self._rank = 0 self._world_size = 8 self._backend = "xla" @property def rank(self) -> int: """Process rank for distributed training.""" return self._rank @property def world_size(self) -> int: """Process world size for distributed training.""" return self._world_size @property def backend(self) -> Optional[str]: """String identifier for distributed backend.""" return self._backend def barrier(self) -> None: """ Synchronizes all processes. This collective blocks processes until the all runs enter the function. """ xm.rendezvous("barrier") def spawn(self, fn: Callable, *args: Any, **kwargs: Any) -> None: """Spawns abstraction for``nprocs`` creation with specified ``fn`` and ``args``/``kwargs``. Args: fn (function): Function is called as the entrypoint of the spawned process. This function must be defined at the top level of a module so it can be pickled and spawned. This is a requirement imposed by multiprocessing. The function is called as ``fn(i, *args)``, where ``i`` is the process index and ``args`` is the passed through tuple of arguments. *args: Arguments passed to spawn method. **kwargs: Keyword-arguments passed to spawn method. Returns: wrapped function. """ return xmp.spawn( fn, args=(self._world_size,), nprocs=self._world_size, start_method="fork" ) def setup_process(self, rank: int = -1, world_size: int = 1): """Initialize DDP variables and processes. Args: rank: process rank. Default is `-1`. world_size: number of devices in netwok to expect for train. Default is `1`. """ self._rank = rank self._world_size = world_size self._device = xm.xla_device() def sync_tensor(self, tensor: torch.Tensor, mode: str) -> torch.Tensor: """Syncs ``tensor`` over ``world_size`` in distributed mode. Args: tensor: tensor to sync across the processes. mode: tensor synchronization type, should be one of 'sum' or 'mean'. Default is 'mean'. Returns: torch.Tensor with synchronized values. Raises: ValueError: if mode is out of ``sum``, ``mean``. """ # return tensor if mode not in {"sum", "mean"}: raise ValueError(f"Unknown sync_type '{mode}'") if mode == "sum": return xm.all_reduce("sum", tensor) elif mode == "mean": return xm.all_reduce("sum", tensor, scale=1.0 / self.world_size) def sync_metrics(self, metrics: Dict) -> Dict: """Syncs ``metrics`` over ``world_size`` in the distributed mode.""" metrics = { k: xm.mesh_reduce(k, v.item() if isinstance(v, torch.Tensor) else v, np.mean) for k, v in metrics.items() } return metrics def optimizer_step(self, loss, model, optimizer) -> None: """Abstraction over ``optimizer.step()`` step.""" xm.optimizer_step(optimizer) def autocast_loader(self, loader: DataLoader): """Loader wrapper for the distributed mode.""" return ParallelLoader(loader, [self.device]).per_device_loader(self.device)
__all__ = ["XLAEngine", "DistributedXLAEngine"]