from typing import List, Optional
import torch
from catalyst.metrics.functional._misc import (
process_multilabel_components,
process_recsys_components,
)
[docs]def binary_average_precision(
outputs: torch.Tensor, targets: torch.Tensor, weights: Optional[torch.Tensor] = None
) -> torch.Tensor:
"""Computes the binary average precision.
Args:
outputs: NxK tensor that for each of the N examples
indicates the probability of the example belonging to each of
the K classes, according to the model.
targets: binary NxK tensort that encodes which of the K
classes are associated with the N-th input
(eg: a row [0, 1, 0, 1] indicates that the example is
associated with classes 2 and 4)
weights: importance for each sample
Returns:
torch.Tensor: tensor of [K; ] shape, with average precision for K classes
Example:
.. code-block:: python
import torch
from catalyst import metrics
metrics.binary_average_precision(
outputs=torch.Tensor([0.1, 0.4, 0.35, 0.8]),
targets=torch.Tensor([0, 0, 1, 1]),
)
# tensor([0.8333])
"""
# outputs - [bs; num_classes] with scores
# targets - [bs; num_classes] with binary labels
outputs, targets, weights = process_multilabel_components(
outputs=outputs, targets=targets, weights=weights
)
if outputs.numel() == 0:
return torch.zeros(1)
ap = torch.zeros(targets.size(1))
# compute average precision for each class
for class_i in range(targets.size(1)):
# sort scores
class_scores = outputs[:, class_i]
class_targets = targets[:, class_i]
_, sortind = torch.sort(class_scores, dim=0, descending=True)
correct = class_targets[sortind]
# compute true positive sums
if weights is not None:
class_weight = weights[sortind]
weighted_correct = correct.float() * class_weight
tp = weighted_correct.cumsum(0)
rg = class_weight.cumsum(0)
else:
tp = correct.float().cumsum(0)
rg = torch.arange(1, targets.size(0) + 1).float()
# compute precision curve
precision = tp.div(rg)
# compute average precision
ap[class_i] = precision[correct.bool()].sum() / max(float(correct.sum()), 1)
return ap
[docs]def average_precision(outputs: torch.Tensor, targets: torch.Tensor, k: int) -> torch.Tensor:
"""
Calculate the Average Precision for RecSys.
The precision metric summarizes the fraction of relevant items
out of the whole the recommendation list.
To compute the precision at k set the threshold rank k,
compute the percentage of relevant items in topK,
ignoring the documents ranked lower than k.
The average precision at k (AP at k) summarizes the average
precision for relevant items up to the k-th one.
Wikipedia entry for the Average precision
<https://en.wikipedia.org/w/index.php?title=Information_retrieval&
oldid=793358396#Average_precision>
If a relevant document never gets retrieved,
we assume the precision corresponding to that
relevant doc to be zero
Args:
outputs (torch.Tensor):
Tensor with predicted score
size: [batch_size, slate_length]
model outputs, logits
targets (torch.Tensor):
Binary tensor with ground truth.
1 means the item is relevant
and 0 not relevant
size: [batch_szie, slate_length]
ground truth, labels
k:
Parameter for evaluation on top-k items
Returns:
ap_score (torch.Tensor):
The map score for each batch.
size: [batch_size, 1]
Example:
.. code-block:: python
import torch
from catalyst import metrics
metrics.average_precision(
outputs=torch.tensor([
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0],
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0],
]),
targets=torch.tensor([
[1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0],
[0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0],
]),
k=10,
)
# tensor([0.6222, 0.4429])
"""
targets_sort_by_outputs = process_recsys_components(outputs, targets)[:, :k]
precisions = torch.zeros_like(targets_sort_by_outputs)
for index in range(k):
precisions[:, index] = torch.sum(targets_sort_by_outputs[:, : (index + 1)], dim=1) / float(
index + 1
)
precisions[:, index] = torch.sum(targets_sort_by_outputs[:, : (index + 1)], dim=1) / float(
index + 1
)
only_relevant_precision = precisions * targets_sort_by_outputs
ap_score = only_relevant_precision.sum(dim=1) / ((only_relevant_precision != 0).sum(dim=1))
ap_score[torch.isnan(ap_score)] = 0
return ap_score
[docs]def mean_average_precision(
outputs: torch.Tensor, targets: torch.Tensor, topk: List[int]
) -> List[torch.Tensor]:
"""
Calculate the mean average precision (MAP) for RecSys.
The metrics calculate the mean of the AP across all batches
MAP amplifies the interest in finding many
relevant items for each query
Args:
outputs (torch.Tensor): Tensor with predicted score
size: [batch_size, slate_length]
model outputs, logits
targets (torch.Tensor):
Binary tensor with ground truth.
1 means the item is relevant and 0 not relevant
size: [batch_szie, slate_length]
ground truth, labels
topk (List[int]): List of parameter for evaluation topK items
Returns:
map_at_k (Tuple[float]):
The map score for every k.
size: len(top_k)
Example:
.. code-block:: python
import torch
from catalyst import metrics
metrics.mean_average_precision(
outputs=torch.tensor([
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0],
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0],
]),
targets=torch.tensor([
[1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0],
[0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0],
]),
topk=[1, 3, 5, 10],
)
# [tensor(0.5000), tensor(0.6667), tensor(0.6417), tensor(0.5325)]
"""
results = []
for k in topk:
k = min(outputs.size(1), k)
results.append(torch.mean(average_precision(outputs, targets, k)))
return results
__all__ = [
"binary_average_precision",
"mean_average_precision",
"average_precision",
]