Contrib¶
Catalyst contrib modules are supported in the code-as-a-documentation format. If you are interested in the details - please, follow the code of the implementation. If you are interested in contributing to the library - feel free to open a pull request. For more information, please follow the code for contrib-based extensions.
Data¶
InBatchSamplers¶
InBatchTripletsSampler¶
- class catalyst.contrib.data.sampler_inbatch.InBatchTripletsSampler[source]¶
Bases:
catalyst.contrib.data.sampler_inbatch.IInbatchTripletSampler
Base class for a triplets samplers. We expect that the child instances of this class will be used to forming triplets inside the batches. (Note. It is assumed that set of output features is a subset of samples features inside the batch.) The batches must contain at least 2 samples for each class and at least 2 different classes, such behaviour can be garantee via using catalyst.data.sampler.BatchBalanceClassSampler
But you are not limited to using it in any other way.
- sample(features: torch.Tensor, labels: Union[List[int], torch.Tensor]) Tuple[torch.Tensor, torch.Tensor, torch.Tensor] [source]¶
- Parameters
features – has the shape of [batch_size, feature_size]
labels – labels of the samples in the batch
- Returns
(anchor, positive, negative)
- Return type
the batch of the triplets in the order below
AllTripletsSampler¶
- class catalyst.contrib.data.sampler_inbatch.AllTripletsSampler(max_output_triplets: int = 9223372036854775807)[source]¶
Bases:
catalyst.contrib.data.sampler_inbatch.InBatchTripletsSampler
This sampler selects all the possible triplets for the given labels
HardTripletsSampler¶
- class catalyst.contrib.data.sampler_inbatch.HardTripletsSampler(norm_required: bool = False)[source]¶
Bases:
catalyst.contrib.data.sampler_inbatch.InBatchTripletsSampler
This sampler selects hardest triplets based on distances between features: the hardest positive sample has the maximal distance to the anchor sample, the hardest negative sample has the minimal distance to the anchor sample.
Note that a typical triplet loss chart is as follows: 1. Falling: loss decreases to a value equal to the margin. 2. Long plato: the loss oscillates near the margin. 3. Falling: loss decreases to zero.
HardClusterSampler¶
- class catalyst.contrib.data.sampler_inbatch.HardClusterSampler[source]¶
Bases:
catalyst.contrib.data.sampler_inbatch.IInbatchTripletSampler
This sampler selects hardest triplets based on distance to mean vectors: anchor is a mean vector of features of i-th class in the batch, the hardest positive sample is the most distant from anchor sample of anchor’s class, the hardest negative sample is the closest mean vector of another classes.
The batch must contain k samples for p classes in it (k > 1, p > 1).
- sample(features: torch.Tensor, labels: Union[List[int], torch.Tensor]) Tuple[torch.Tensor, torch.Tensor, torch.Tensor] [source]¶
This method samples the hardest triplets in the batch.
- Parameters
features – tensor of shape (batch_size; embed_dim) that contains k samples for each of p classes
labels – labels of the batch, list or tensor of size (batch_size)
- Returns
p triplets of (mean_vector, positive, negative_mean_vector)
Samplers¶
BalanceBatchSampler¶
- class catalyst.contrib.data.sampler.BalanceBatchSampler(labels: Union[List[int], numpy.ndarray], p: int, k: int)[source]¶
Bases:
torch.utils.data.sampler.Sampler
This kind of sampler can be used for both metric learning and classification task.
Warning
Deprecated realization, used for backward compatibility. Please use BatchBalanceClassSampler instead.
Sampler with the given strategy for the C unique classes dataset: - Selection P of C classes for the 1st batch - Selection K instances for each class for the 1st batch - Selection P of C - P remaining classes for 2nd batch - Selection K instances for each class for the 2nd batch - … The epoch ends when there are no classes left. So, the batch sise is P * K except the last one.
Thus, in each epoch, all the classes will be selected once, but this does not mean that all the instances will be selected during the epoch.
One of the purposes of this sampler is to be used for forming triplets and pos/neg pairs inside the batch. To guarante existance of these pairs in the batch, P and K should be > 1. (1)
Behavior in corner cases: - If a class does not contain K instances, a choice will be made with repetition. - If C % P == 1 then one of the classes should be dropped otherwise statement (1) will not be met.
This type of sampling can be found in the classical paper of Person Re-Id, where P equals 32 and K equals 4: In Defense of the Triplet Loss for Person Re-Identification.
- Parameters
labels – list of classes labeles for each elem in the dataset
p – number of classes in a batch, should be > 1
k – number of instances of each class in a batch, should be > 1
- property batch_size: int¶
Returns: this value should be used in DataLoader as batch size
- property batches_in_epoch: int¶
Returns: number of batches in an epoch
DynamicBalanceClassSampler¶
- class catalyst.contrib.data.sampler.DynamicBalanceClassSampler(labels: List[Union[str, int]], exp_lambda: float = 0.9, start_epoch: int = 0, max_d: Optional[int] = None, mode: Union[str, int] = 'downsampling', ignore_warning: bool = False)[source]¶
Bases:
torch.utils.data.sampler.Sampler
This kind of sampler can be used for classification tasks with significant class imbalance.
The idea of this sampler that we start with the original class distribution and gradually move to uniform class distribution like with downsampling.
Let’s define :math: D_i = #C_i/ #C_min where :math: #C_i is a size of class i and :math: #C_min is a size of the rarest class, so :math: D_i define class distribution. Also define :math: g(n_epoch) is a exponential scheduler. On each epoch current :math: D_i calculated as :math: current D_i = D_i ^ g(n_epoch), after this data samples according this distribution.
Notes
In the end of the training, epochs will contain only min_size_class * n_classes examples. So, possible it will not necessary to do validation on each epoch. For this reason use ControlFlowCallback.
Examples
>>> import torch >>> import numpy as np
>>> from catalyst.data import DynamicBalanceClassSampler >>> from torch.utils import data
>>> features = torch.Tensor(np.random.random((200, 100))) >>> labels = np.random.randint(0, 4, size=(200,)) >>> sampler = DynamicBalanceClassSampler(labels) >>> labels = torch.LongTensor(labels) >>> dataset = data.TensorDataset(features, labels) >>> loader = data.dataloader.DataLoader(dataset, batch_size=8)
>>> for batch in loader: >>> b_features, b_labels = batch
Sampler was inspired by https://arxiv.org/abs/1901.06783
- __init__(labels: List[Union[str, int]], exp_lambda: float = 0.9, start_epoch: int = 0, max_d: Optional[int] = None, mode: Union[str, int] = 'downsampling', ignore_warning: bool = False)[source]¶
- Parameters
labels – list of labels for each elem in the dataset
exp_lambda – exponent figure for schedule
start_epoch – start epoch number, can be useful for multistage
experiments –
max_d – if not None, limit on the difference between the most
classes (frequent and the rarest) –
heuristic –
mode – number of samples per class in the end of training. Must be
it ("downsampling" or number. Before change) –
you (make sure that) –
work (understand how does it) –
ignore_warning – ignore warning about min class size
Transforms¶
Compose¶
ImageToTensor¶
- class catalyst.contrib.data.transforms.ImageToTensor[source]¶
Bases:
object
Convert a
numpy.ndarray
to tensor. Converts numpy.ndarray (H x W x C) in the range [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0] if the numpy.ndarray has dtype = np.uint8 In the other cases, tensors are returned without scaling.- __init__()¶
NormalizeImage¶
- class catalyst.contrib.data.transforms.NormalizeImage(mean, std, inplace=False)[source]¶
Bases:
object
Normalize a tensor image with mean and standard deviation.
Given mean:
(mean[1],...,mean[n])
and std:(std[1],..,std[n])
forn
channels, this transform will normalize each channel of the inputtorch.*Tensor
i.e.,output[channel] = (input[channel] - mean[channel]) / std[channel]
Note
- This transform acts out of place, i.e.,
it does not mutate the input tensor.
Datasets¶
CIFAR10¶
- class catalyst.contrib.datasets.cifar.CIFAR10(root: str, train: bool = True, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False)[source]¶
Bases:
catalyst.contrib.datasets.cifar.VisionDataset
CIFAR10 Dataset.
- Parameters
root (string) – Root directory of dataset where directory
cifar-10-batches-py
exists or will be saved to if download is set to True.train (bool, optional) – If True, creates dataset from training set, otherwise creates from test set.
transform (callable, optional) – A function/transform that takes in an PIL image and returns a transformed version. E.g,
transforms.RandomCrop
target_transform (callable, optional) – A function/transform that takes in the target and transforms it.
download (bool, optional) – If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again.
CIFAR100¶
- class catalyst.contrib.datasets.cifar.CIFAR100(root: str, train: bool = True, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False)[source]¶
Bases:
catalyst.contrib.datasets.cifar.CIFAR10
CIFAR100 Dataset.
This is a subclass of the CIFAR10 Dataset.
- __init__(root: str, train: bool = True, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False) None ¶
Imagenette¶
- class catalyst.contrib.datasets.imagenette.Imagenette(root: str, train: bool = True, download: bool = False, **kwargs)[source]¶
Bases:
catalyst.contrib.datasets.misc_cv.ImageClassificationDataset
Imagenette Dataset.
Note
catalyst[cv] required for this dataset.
- __init__(root: str, train: bool = True, download: bool = False, **kwargs)¶
Constructor method for the
ImageClassificationDataset
class.- Parameters
root – root directory of dataset
train – if
True
, creates dataset fromtrain/
subfolder, otherwise fromval/
download – if
True
, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again**kwargs – Keyword-arguments passed to
super().__init__
method.
Imagenette160¶
- class catalyst.contrib.datasets.imagenette.Imagenette160(root: str, train: bool = True, download: bool = False, **kwargs)[source]¶
Bases:
catalyst.contrib.datasets.misc_cv.ImageClassificationDataset
Imagenette Dataset with images resized so that the shortest size is 160 px.
Note
catalyst[cv] required for this dataset.
- __init__(root: str, train: bool = True, download: bool = False, **kwargs)¶
Constructor method for the
ImageClassificationDataset
class.- Parameters
root – root directory of dataset
train – if
True
, creates dataset fromtrain/
subfolder, otherwise fromval/
download – if
True
, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again**kwargs – Keyword-arguments passed to
super().__init__
method.
Imagenette320¶
- class catalyst.contrib.datasets.imagenette.Imagenette320(root: str, train: bool = True, download: bool = False, **kwargs)[source]¶
Bases:
catalyst.contrib.datasets.misc_cv.ImageClassificationDataset
Imagenette Dataset with images resized so that the shortest size is 320 px.
Note
catalyst[cv] required for this dataset.
- __init__(root: str, train: bool = True, download: bool = False, **kwargs)¶
Constructor method for the
ImageClassificationDataset
class.- Parameters
root – root directory of dataset
train – if
True
, creates dataset fromtrain/
subfolder, otherwise fromval/
download – if
True
, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again**kwargs – Keyword-arguments passed to
super().__init__
method.
Imagewang¶
- class catalyst.contrib.datasets.imagewang.Imagewang(root: str, train: bool = True, download: bool = False, **kwargs)[source]¶
Bases:
catalyst.contrib.datasets.misc_cv.ImageClassificationDataset
Imagewang Dataset.
Note
catalyst[cv] required for this dataset.
- __init__(root: str, train: bool = True, download: bool = False, **kwargs)¶
Constructor method for the
ImageClassificationDataset
class.- Parameters
root – root directory of dataset
train – if
True
, creates dataset fromtrain/
subfolder, otherwise fromval/
download – if
True
, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again**kwargs – Keyword-arguments passed to
super().__init__
method.
Imagewang160¶
- class catalyst.contrib.datasets.imagewang.Imagewang160(root: str, train: bool = True, download: bool = False, **kwargs)[source]¶
Bases:
catalyst.contrib.datasets.misc_cv.ImageClassificationDataset
Imagewang Dataset with images resized so that the shortest size is 160 px.
Note
catalyst[cv] required for this dataset.
- __init__(root: str, train: bool = True, download: bool = False, **kwargs)¶
Constructor method for the
ImageClassificationDataset
class.- Parameters
root – root directory of dataset
train – if
True
, creates dataset fromtrain/
subfolder, otherwise fromval/
download – if
True
, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again**kwargs – Keyword-arguments passed to
super().__init__
method.
Imagewang320¶
- class catalyst.contrib.datasets.imagewang.Imagewang320(root: str, train: bool = True, download: bool = False, **kwargs)[source]¶
Bases:
catalyst.contrib.datasets.misc_cv.ImageClassificationDataset
Imagewang Dataset with images resized so that the shortest size is 320 px.
Note
catalyst[cv] required for this dataset.
- __init__(root: str, train: bool = True, download: bool = False, **kwargs)¶
Constructor method for the
ImageClassificationDataset
class.- Parameters
root – root directory of dataset
train – if
True
, creates dataset fromtrain/
subfolder, otherwise fromval/
download – if
True
, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again**kwargs – Keyword-arguments passed to
super().__init__
method.
Imagewoof¶
- catalyst.contrib.datasets.imagewoof¶
alias of <module ‘catalyst.contrib.datasets.imagewoof’ from ‘/Users/scitator/Documents/projects/oss/catalyst/catalyst/contrib/datasets/imagewoof.py’>
Imagewoof160¶
- class catalyst.contrib.datasets.Imagewoof160(root: str, train: bool = True, download: bool = False, **kwargs)[source]¶
Bases:
catalyst.contrib.datasets.misc_cv.ImageClassificationDataset
Imagewoof Dataset with images resized so that the shortest size is 160 px.
Note
catalyst[cv] required for this dataset.
- __init__(root: str, train: bool = True, download: bool = False, **kwargs)¶
Constructor method for the
ImageClassificationDataset
class.- Parameters
root – root directory of dataset
train – if
True
, creates dataset fromtrain/
subfolder, otherwise fromval/
download – if
True
, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again**kwargs – Keyword-arguments passed to
super().__init__
method.
Imagewoof320¶
- class catalyst.contrib.datasets.Imagewoof320(root: str, train: bool = True, download: bool = False, **kwargs)[source]¶
Bases:
catalyst.contrib.datasets.misc_cv.ImageClassificationDataset
Imagewoof Dataset with images resized so that the shortest size is 320 px.
Note
catalyst[cv] required for this dataset.
- __init__(root: str, train: bool = True, download: bool = False, **kwargs)¶
Constructor method for the
ImageClassificationDataset
class.- Parameters
root – root directory of dataset
train – if
True
, creates dataset fromtrain/
subfolder, otherwise fromval/
download – if
True
, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again**kwargs – Keyword-arguments passed to
super().__init__
method.
MNIST¶
- class catalyst.contrib.datasets.mnist.MNIST(root: str, train: bool = True, download: bool = True, normalize: tuple = (0.1307, 0.3081), numpy: bool = False)[source]¶
Bases:
torch.utils.data.dataset.Dataset
MNIST Dataset for testing purposes.
- Args:
- root: Root directory of dataset where
MNIST/processed/training.pt
andMNIST/processed/test.pt
exist.- train (bool, optional): If True, creates dataset from
training.pt
, otherwise fromtest.pt
.- download (bool, optional): If true, downloads the dataset from
the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again.
- normalize (tuple, optional): mean and std
for the MNIST dataset normalization.
- numpy (bool, optional): boolean flag to return an np.ndarray,
rather than torch.tensor (default: False).
- Raises
RuntimeError – If
download is False
and the dataset not found.
MovieLens¶
- class catalyst.contrib.datasets.movielens.MovieLens(root, train=True, download=False, min_rating=0.0)[source]¶
Bases:
torch.utils.data.dataset.Dataset
MovieLens data sets were collected by the GroupLens Research Project at the University of Minnesota.
This data set consists of: * 100,000 ratings (1-5) from 943 users on 1682 movies. * Each user has rated at least 20 movies. * Simple demographic info for the users (age, gender, occupation, zip)
The data was collected through the MovieLens web site (movielens.umn.edu) during the seven-month period from September 19th, 1997 through April 22nd, 1998. This data has been cleaned up - users who had less than 20 ratings or did not have complete demographic information were removed from this data set. Detailed descriptions of the data file can be found at the end of this file.
Neither the University of Minnesota nor any of the researchers involved can guarantee the correctness of the data, its suitability for any particular purpose, or the validity of results based on the use of the data set. The data set may be used for any research purposes under the following conditions: * The user may not state or imply any endorsement from the University of Minnesota or the GroupLens Research Group. * The user must acknowledge the use of the data set in publications resulting from the use of the data set (see below for citation information). * The user may not redistribute the data without separate permission. * The user may not use this information for any commercial or revenue-bearing purposes without first obtaining permission from a faculty member of the GroupLens Research Project at the University of Minnesota.
If you have any further questions or comments, please contact GroupLens <grouplens-info@cs.umn.edu>. http://files.grouplens.org/datasets/movielens/ml-100k-README.txt
Note
catalyst[ml] required for this dataset.
- __init__(root, train=True, download=False, min_rating=0.0)[source]¶
- Parameters
root (string) – Root directory of dataset where
MovieLens/processed/training.pt
andMovieLens/processed/test.pt
exist.train (bool, optional) – If True, creates dataset from
training.pt
, otherwise fromtest.pt
.download (bool, optional) – If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again.
min_rating (float, optional) – Minimum rating to include in the interaction matrix
- Raises
RuntimeError – If
download is False
and the dataset not found.
Layers¶
AdaCos¶
- class catalyst.contrib.layers.cosface.AdaCos(in_features: int, out_features: int, dynamical_s: bool = True, eps: float = 1e-06)[source]¶
Bases:
torch.nn.modules.module.Module
Implementation of AdaCos: Adaptively Scaling Cosine Logits for Effectively Learning Deep Face Representations.
- Parameters
in_features – size of each input sample.
out_features – size of each output sample.
dynamical_s – option to use dynamical scale parameter. If
False
then will be used initial scale. Default:True
.eps – operation accuracy. Default:
1e-6
.
- Shape:
Input: \((batch, H_{in})\) where \(H_{in} = in\_features\).
Output: \((batch, H_{out})\) where \(H_{out} = out\_features\).
Example
>>> layer = AdaCos(5, 10) >>> loss_fn = nn.CrosEntropyLoss() >>> embedding = torch.randn(3, 5, requires_grad=True) >>> target = torch.empty(3, dtype=torch.long).random_(10) >>> output = layer(embedding, target) >>> loss = loss_fn(output, target) >>> self.engine.backward(loss)
- forward(input: torch.Tensor, target: Optional[torch.LongTensor] = None) torch.Tensor [source]¶
- Parameters
input – input features, expected shapes
BxF
whereB
is batch dimension andF
is an input feature dimension.target – target classes, expected shapes
B
whereB
is batch dimension. If None then will be returned projection on centroids. Default is None.
- Returns
tensor (logits) with shapes
BxC
whereC
is a number of classes (out_features).
- training: bool¶
AMSoftmax¶
- class catalyst.contrib.layers.amsoftmax.AMSoftmax(in_features: int, out_features: int, s: float = 64.0, m: float = 0.5, eps: float = 1e-06)[source]¶
Bases:
torch.nn.modules.module.Module
Implementation of AMSoftmax: Additive Margin Softmax for Face Verification.
- Parameters
in_features – size of each input sample.
out_features – size of each output sample.
s – norm of input feature. Default:
64.0
.m – margin. Default:
0.5
.eps – operation accuracy. Default:
1e-6
.
- Shape:
Input: \((batch, H_{in})\) where \(H_{in} = in\_features\).
Output: \((batch, H_{out})\) where \(H_{out} = out\_features\).
Example
>>> layer = AMSoftmax(5, 10, s=1.31, m=0.5) >>> loss_fn = nn.CrossEntropyLoss() >>> embedding = torch.randn(3, 5, requires_grad=True) >>> target = torch.empty(3, dtype=torch.long).random_(10) >>> output = layer(embedding, target) >>> loss = loss_fn(output, target) >>> self.engine.backward(loss)
- forward(input: torch.Tensor, target: Optional[torch.LongTensor] = None) torch.Tensor [source]¶
- Parameters
input – input features, expected shapes
BxF
whereB
is batch dimension andF
is an input feature dimension.target – target classes, expected shapes
B
whereB
is batch dimension. If None then will be returned projection on centroids. Default is None.
- Returns
tensor (logits) with shapes
BxC
whereC
is a number of classes (out_features).
- training: bool¶
ArcFace¶
- class catalyst.contrib.layers.arcface.ArcFace(in_features: int, out_features: int, s: float = 64.0, m: float = 0.5, eps: float = 1e-06)[source]¶
Bases:
torch.nn.modules.module.Module
Implementation of ArcFace: Additive Angular Margin Loss for Deep Face Recognition.
- Parameters
in_features – size of each input sample.
out_features – size of each output sample.
s – norm of input feature. Default:
64.0
.m – margin. Default:
0.5
.eps – operation accuracy. Default:
1e-6
.
- Shape:
Input: \((batch, H_{in})\) where \(H_{in} = in\_features\).
Output: \((batch, H_{out})\) where \(H_{out} = out\_features\).
Example
>>> layer = ArcFace(5, 10, s=1.31, m=0.5) >>> loss_fn = nn.CrossEntropyLoss() >>> embedding = torch.randn(3, 5, requires_grad=True) >>> target = torch.empty(3, dtype=torch.long).random_(10) >>> output = layer(embedding, target) >>> loss = loss_fn(output, target) >>> self.engine.backward(loss)
- forward(input: torch.Tensor, target: Optional[torch.LongTensor] = None) torch.Tensor [source]¶
- Parameters
input – input features, expected shapes
BxF
whereB
is batch dimension andF
is an input feature dimension.target – target classes, expected shapes
B
whereB
is batch dimension. If None then will be returned projection on centroids. Default is None.
- Returns
tensor (logits) with shapes
BxC
whereC
is a number of classes (out_features).
- training: bool¶
ArcMarginProduct¶
- class catalyst.contrib.layers.arcmargin.ArcMarginProduct(in_features: int, out_features: int)[source]¶
Bases:
torch.nn.modules.module.Module
Implementation of Arc Margin Product.
- Parameters
in_features – size of each input sample.
out_features – size of each output sample.
- Shape:
Input: \((batch, H_{in})\) where \(H_{in} = in\_features\).
Output: \((batch, H_{out})\) where \(H_{out} = out\_features\).
Example
>>> layer = ArcMarginProduct(5, 10) >>> loss_fn = nn.CrosEntropyLoss() >>> embedding = torch.randn(3, 5, requires_grad=True) >>> target = torch.empty(3, dtype=torch.long).random_(10) >>> output = layer(embedding) >>> loss = loss_fn(output, target) >>> self.engine.backward(loss)
- forward(input: torch.Tensor) torch.Tensor [source]¶
- Parameters
input – input features, expected shapes
BxF
whereB
is batch dimension andF
is an input feature dimension.- Returns
tensor (logits) with shapes
BxC
whereC
is a number of classes (out_features).
- training: bool¶
cSE¶
- class catalyst.contrib.layers.se.cSE(in_channels: int, r: int = 16)[source]¶
Bases:
torch.nn.modules.module.Module
The channel-wise SE (Squeeze and Excitation) block from the Squeeze-and-Excitation Networks paper.
Adapted from https://www.kaggle.com/c/tgs-salt-identification-challenge/discussion/65939 and https://www.kaggle.com/c/tgs-salt-identification-challenge/discussion/66178
Shape:
Input: (batch, channels, height, width)
Output: (batch, channels, height, width) (same shape as input)
CosFace¶
- class catalyst.contrib.layers.cosface.CosFace(in_features: int, out_features: int, s: float = 64.0, m: float = 0.35)[source]¶
Bases:
torch.nn.modules.module.Module
Implementation of CosFace: Large Margin Cosine Loss for Deep Face Recognition.
- Parameters
in_features – size of each input sample.
out_features – size of each output sample.
s – norm of input feature. Default:
64.0
.m – margin. Default:
0.35
.
- Shape:
Input: \((batch, H_{in})\) where \(H_{in} = in\_features\).
Output: \((batch, H_{out})\) where \(H_{out} = out\_features\).
Example
>>> layer = CosFaceLoss(5, 10, s=1.31, m=0.1) >>> loss_fn = nn.CrosEntropyLoss() >>> embedding = torch.randn(3, 5, requires_grad=True) >>> target = torch.empty(3, dtype=torch.long).random_(10) >>> output = layer(embedding, target) >>> loss = loss_fn(output, target) >>> self.engine.backward(loss)
- forward(input: torch.Tensor, target: Optional[torch.LongTensor] = None) torch.Tensor [source]¶
- Parameters
input – input features, expected shapes
BxF
whereB
is batch dimension andF
is an input feature dimension.target – target classes, expected shapes
B
whereB
is batch dimension. If None then will be returned projection on centroids. Default is None.
- Returns
tensor (logits) with shapes
BxC
whereC
is a number of classes (out_features).
- training: bool¶
CurricularFace¶
- class catalyst.contrib.layers.curricularface.CurricularFace(in_features: int, out_features: int, s: float = 64.0, m: float = 0.5)[source]¶
Bases:
torch.nn.modules.module.Module
Implementation of CurricularFace: Adaptive Curriculum Learning Loss for Deep Face Recognition.
Official pytorch implementation.
- Parameters
in_features – size of each input sample.
out_features – size of each output sample.
s – norm of input feature. Default:
64.0
.m – margin. Default:
0.5
.
- Shape:
Input: \((batch, H_{in})\) where \(H_{in} = in\_features\).
Output: \((batch, H_{out})\) where \(H_{out} = out\_features\).
Example
>>> layer = CurricularFace(5, 10, s=1.31, m=0.5) >>> loss_fn = nn.CrosEntropyLoss() >>> embedding = torch.randn(3, 5, requires_grad=True) >>> target = torch.empty(3, dtype=torch.long).random_(10) >>> output = layer(embedding, target) >>> loss = loss_fn(output, target) >>> self.engine.backward(loss)
- forward(input: torch.Tensor, label: Optional[torch.LongTensor] = None) torch.Tensor [source]¶
- Parameters
input – input features, expected shapes
BxF
whereB
is batch dimension andF
is an input feature dimension.label – target classes, expected shapes
B
whereB
is batch dimension. If None then will be returned projection on centroids. Default is None.
- Returns
tensor (logits) with shapes
BxC
whereC
is a number of classes.
- training: bool¶
FactorizedLinear¶
- class catalyst.contrib.layers.factorized.FactorizedLinear(nn_linear: torch.nn.modules.linear.Linear, dim_ratio: Union[int, float] = 1.0)[source]¶
Bases:
torch.nn.modules.module.Module
Factorized wrapper for
nn.Linear
- Parameters
nn_linear – torch
nn.Linear
moduledim_ratio – dimension ration to use after weights SVD
- training: bool¶
scSE¶
- class catalyst.contrib.layers.se.scSE(in_channels: int, r: int = 16)[source]¶
Bases:
torch.nn.modules.module.Module
The scSE (Concurrent Spatial and Channel Squeeze and Channel Excitation) block from the Concurrent Spatial and Channel ‘Squeeze & Excitation’ in Fully Convolutional Networks paper.
Adapted from https://www.kaggle.com/c/tgs-salt-identification-challenge/discussion/66178
Shape:
Input: (batch, channels, height, width)
Output: (batch, channels, height, width) (same shape as input)
SoftMax¶
- class catalyst.contrib.layers.softmax.SoftMax(in_features: int, num_classes: int)[source]¶
Bases:
torch.nn.modules.module.Module
Implementation of Significance of Softmax-based Features in Comparison to Distance Metric Learning-based Features.
- Parameters
in_features – size of each input sample.
out_features – size of each output sample.
- Shape:
Input: \((batch, H_{in})\) where \(H_{in} = in\_features\).
Output: \((batch, H_{out})\) where \(H_{out} = out\_features\).
Example
>>> layer = SoftMax(5, 10) >>> loss_fn = nn.CrosEntropyLoss() >>> embedding = torch.randn(3, 5, requires_grad=True) >>> target = torch.empty(3, dtype=torch.long).random_(10) >>> output = layer(embedding, target) >>> loss = loss_fn(output, target) >>> self.engine.backward(loss)
- forward(input: torch.Tensor) torch.Tensor [source]¶
- Parameters
input – input features, expected shapes
BxF
whereB
is batch dimension andF
is an input feature dimension.- Returns
tensor (logits) with shapes
BxC
whereC
is a number of classes (out_features).
- training: bool¶
sSE¶
- class catalyst.contrib.layers.se.sSE(in_channels: int)[source]¶
Bases:
torch.nn.modules.module.Module
The sSE (Channel Squeeze and Spatial Excitation) block from the Concurrent Spatial and Channel ‘Squeeze & Excitation’ in Fully Convolutional Networks paper.
Adapted from https://www.kaggle.com/c/tgs-salt-identification-challenge/discussion/66178
Shape:
Input: (batch, channels, height, width)
Output: (batch, channels, height, width) (same shape as input)
SubCenterArcFace¶
- class catalyst.contrib.layers.arcface.SubCenterArcFace(in_features: int, out_features: int, s: float = 64.0, m: float = 0.5, k: int = 3, eps: float = 1e-06)[source]¶
Bases:
torch.nn.modules.module.Module
Implementation of Sub-center ArcFace: Boosting Face Recognition by Large-scale Noisy Web Faces.
- Parameters
in_features – size of each input sample.
out_features – size of each output sample.
s – norm of input feature, Default:
64.0
.m – margin. Default:
0.5
.k – number of possible class centroids. Default:
3
.eps (float, optional) – operation accuracy. Default:
1e-6
.
- Shape:
Input: \((batch, H_{in})\) where \(H_{in} = in\_features\).
Output: \((batch, H_{out})\) where \(H_{out} = out\_features\).
Example
>>> layer = SubCenterArcFace(5, 10, s=1.31, m=0.35, k=2) >>> loss_fn = nn.CrosEntropyLoss() >>> embedding = torch.randn(3, 5, requires_grad=True) >>> target = torch.empty(3, dtype=torch.long).random_(10) >>> output = layer(embedding, target) >>> loss = loss_fn(output, target) >>> self.engine.backward(loss)
- forward(input: torch.Tensor, target: Optional[torch.LongTensor] = None) torch.Tensor [source]¶
- Parameters
input – input features, expected shapes
BxF
whereB
is batch dimension andF
is an input feature dimension.target – target classes, expected shapes
B
whereB
is batch dimension. If None then will be returned projection on centroids. Default is None.
- Returns
tensor (logits) with shapes
BxC
whereC
is a number of classes.
- training: bool¶
Losses¶
AdaptiveHingeLoss¶
- class catalyst.contrib.losses.recsys.AdaptiveHingeLoss[source]¶
Bases:
catalyst.contrib.losses.recsys.PairwiseLoss
Adaptive hinge loss function.
Takes a set of predictions for implicitly negative items, and selects those that are highest, thus sampling those negatives that are closes to violating the ranking implicit in the pattern of user interactions.
Example:
import torch from catalyst.contrib.losses import recsys pos_score = torch.randn(3, requires_grad=True) neg_scores = torch.randn(5, 3, requires_grad=True) output = recsys.AdaptiveHingeLoss()(pos_score, neg_scores) output.backward()
- forward(positive_score: torch.Tensor, negative_scores: torch.Tensor) torch.Tensor [source]¶
Forward propagation method for the adaptive hinge loss.
- Parameters
positive_score – Tensor containing predictions for known positive items.
negative_scores – Iterable of tensors containing predictions for sampled negative items. More tensors increase the likelihood of finding ranking-violating pairs, but risk overfitting.
- Returns
computed loss
- training: bool¶
BarlowTwinsLoss¶
- class catalyst.contrib.losses.contrastive.BarlowTwinsLoss(offdiag_lambda=1.0, eps=1e-12)[source]¶
Bases:
torch.nn.modules.module.Module
The Contrastive embedding loss.
It has been proposed in Barlow Twins: Self-Supervised Learning via Redundancy Reduction.
Example:
import torch from torch.nn import functional as F from catalyst.contrib import BarlowTwinsLoss embeddings_left = F.normalize(torch.rand(256, 64, requires_grad=True)) embeddings_right = F.normalize(torch.rand(256, 64, requires_grad=True)) criterion = BarlowTwinsLoss(offdiag_lambda = 1) criterion(embeddings_left, embeddings_right)
BPRLoss¶
- class catalyst.contrib.losses.recsys.BPRLoss(gamma=1e-10)[source]¶
Bases:
catalyst.contrib.losses.recsys.PairwiseLoss
Bayesian Personalised Ranking loss function.
It has been proposed in BPRLoss: Bayesian Personalized Ranking from Implicit Feedback.
- Parameters
gamma (float) – Small value to avoid division by zero. Default:
1e-10
.
Example:
import torch from catalyst.contrib.losses import recsys pos_score = torch.randn(3, requires_grad=True) neg_score = torch.randn(3, requires_grad=True) output = recsys.BPRLoss()(pos_score, neg_score) output.backward()
- forward(positive_score: torch.Tensor, negative_score: torch.Tensor) torch.Tensor [source]¶
Forward propagation method for the BPR loss.
- Parameters
positive_score – Tensor containing predictions for known positive items.
negative_score – Tensor containing predictions for sampled negative items.
- Returns
computed loss
- training: bool¶
CircleLoss¶
- class catalyst.contrib.losses.circle.CircleLoss(margin: float, gamma: float)[source]¶
Bases:
torch.nn.modules.module.Module
CircleLoss from Circle Loss: A Unified Perspective of Pair Similarity Optimization paper.
Adapter from: https://github.com/TinyZeaMays/CircleLoss
Example
>>> import torch >>> from torch.nn import functional as F >>> from catalyst.contrib.losses import CircleLoss >>> >>> features = F.normalize(torch.rand(256, 64, requires_grad=True)) >>> labels = torch.randint(high=10, size=(256)) >>> criterion = CircleLoss(margin=0.25, gamma=256) >>> criterion(features, labels)
DiceLoss¶
- class catalyst.contrib.losses.dice.DiceLoss(class_dim: int = 1, mode: str = 'macro', weights: Optional[List[float]] = None, eps: float = 1e-07)[source]¶
Bases:
torch.nn.modules.module.Module
The Dice loss. DiceLoss = 1 - dice score dice score = 2 * intersection / (intersection + union)) = = 2 * tp / (2 * tp + fp + fn)
- __init__(class_dim: int = 1, mode: str = 'macro', weights: Optional[List[float]] = None, eps: float = 1e-07)[source]¶
- Parameters
class_dim – indicates class dimention (K) for
outputs
andtargets
tensors (default = 1)mode – class summation strategy. Must be one of [‘micro’, ‘macro’, ‘weighted’]. If mode=’micro’, classes are ignored, and metric are calculated generally. If mode=’macro’, metric are calculated per-class and than are averaged over all classes. If mode=’weighted’, metric are calculated per-class and than summed over all classes with weights.
weights – class weights(for mode=”weighted”)
eps – epsilon to avoid zero division
FocalLossBinary¶
- class catalyst.contrib.losses.focal.FocalLossBinary(ignore: Optional[int] = None, reduced: bool = False, gamma: float = 2.0, alpha: float = 0.25, threshold: float = 0.5, reduction: str = 'mean')[source]¶
Bases:
torch.nn.modules.loss._Loss
Compute focal loss for binary classification problem.
It has been proposed in Focal Loss for Dense Object Detection paper.
FocalLossMultiClass¶
- class catalyst.contrib.losses.focal.FocalLossMultiClass(ignore: Optional[int] = None, reduced: bool = False, gamma: float = 2.0, alpha: float = 0.25, threshold: float = 0.5, reduction: str = 'mean')[source]¶
Bases:
catalyst.contrib.losses.focal.FocalLossBinary
Compute focal loss for multiclass problem. Ignores targets having -1 label.
It has been proposed in Focal Loss for Dense Object Detection paper.
- __init__(ignore: Optional[int] = None, reduced: bool = False, gamma: float = 2.0, alpha: float = 0.25, threshold: float = 0.5, reduction: str = 'mean')¶
@TODO: Docs. Contribution is welcome.
FocalTrevskyLoss¶
- class catalyst.contrib.losses.trevsky.FocalTrevskyLoss(alpha: float, beta: Optional[float] = None, gamma: float = 1.3333333333333333, class_dim: int = 1, mode: str = 'macro', weights: Optional[List[float]] = None, eps: float = 1e-07)[source]¶
Bases:
torch.nn.modules.module.Module
The focal trevsky loss. TrevskyIndex = TP / (TP + alpha * FN + betta * FP) FocalTrevskyLoss = (1 - TrevskyIndex)^gamma Node: focal will use per image, so loss will pay more attention on complicated images
- __init__(alpha: float, beta: Optional[float] = None, gamma: float = 1.3333333333333333, class_dim: int = 1, mode: str = 'macro', weights: Optional[List[float]] = None, eps: float = 1e-07)[source]¶
- Parameters
alpha – false negative coefficient, bigger alpha bigger penalty for false negative. Must be in (0, 1)
beta – false positive coefficient, bigger alpha bigger penalty for false positive. Must be in (0, 1), if None beta = (1 - alpha)
gamma – focal coefficient. It determines how much the weight of
reduced. (simple examples is) –
class_dim – indicates class dimention (K) for
outputs
andtargets
tensors (default = 1)mode – class summation strategy. Must be one of [‘micro’, ‘macro’, ‘weighted’]. If mode=’micro’, classes are ignored, and metric are calculated generally. If mode=’macro’, metric are calculated separately and than are averaged over all classes. If mode=’weighted’, metric are calculated separately and than summed over all classes with weights.
weights – class weights(for mode=”weighted”)
eps – epsilon to avoid zero division
HingeLoss¶
- class catalyst.contrib.losses.recsys.HingeLoss[source]¶
Bases:
catalyst.contrib.losses.recsys.PairwiseLoss
Hinge loss function.
Example:
import torch from catalyst.contrib.losses import recsys pos_score = torch.randn(3, requires_grad=True) neg_score = torch.randn(3, requires_grad=True) output = recsys.HingeLoss()(pos_score, neg_score) output.backward()
- forward(positive_score: torch.Tensor, negative_score: torch.Tensor) torch.Tensor [source]¶
Forward propagation method for the hinge loss.
- Parameters
positive_score – Tensor containing predictions for known positive items.
negative_score – Tensor containing predictions for sampled negative items.
- Returns
computed loss
- training: bool¶
HuberLossV0¶
- class catalyst.contrib.losses.regression.HuberLossV0(clip_delta=1.0, reduction='mean')[source]¶
Bases:
torch.nn.modules.module.Module
@TODO: Docs. Contribution is welcome.
- forward(output: torch.Tensor, target: torch.Tensor, weights=None) torch.Tensor [source]¶
@TODO: Docs. Contribution is welcome.
- training: bool¶
IoULoss¶
- class catalyst.contrib.losses.iou.IoULoss(class_dim: int = 1, mode: str = 'macro', weights: Optional[List[float]] = None, eps: float = 1e-07)[source]¶
Bases:
torch.nn.modules.module.Module
The intersection over union (Jaccard) loss. IOULoss = 1 - iou score iou score = intersection / union = tp / (tp + fp + fn)
- __init__(class_dim: int = 1, mode: str = 'macro', weights: Optional[List[float]] = None, eps: float = 1e-07)[source]¶
- Parameters
class_dim – indicates class dimention (K) for
outputs
andtargets
tensors (default = 1)mode – class summation strategy. Must be one of [‘micro’, ‘macro’, ‘weighted’]. If mode=’micro’, classes are ignored, and metric are calculated generally. If mode=’macro’, metric are calculated per-class and than are averaged over all classes. If mode=’weighted’, metric are calculated per-class and than summed over all classes with weights.
weights – class weights(for mode=”weighted”)
eps – epsilon to avoid zero division
LogisticLoss¶
- class catalyst.contrib.losses.recsys.LogisticLoss[source]¶
Bases:
catalyst.contrib.losses.recsys.PairwiseLoss
Logistic loss function.
Example:
import torch from catalyst.contrib.losses import recsys pos_score = torch.randn(3, requires_grad=True) neg_score = torch.randn(3, requires_grad=True) output = recsys.LogisticLoss()(pos_score, neg_score) output.backward()
- forward(positive_score: torch.Tensor, negative_score: torch.Tensor) torch.Tensor [source]¶
Forward propagation method for the logistic loss.
- Parameters
positive_score – Tensor containing predictions for known positive items.
negative_score – Tensor containing predictions for sampled negative items.
- Returns
computed loss
- training: bool¶
NTXentLoss¶
- class catalyst.contrib.losses.ntxent.NTXentLoss(tau: float, reduction: str = 'mean')[source]¶
Bases:
torch.nn.modules.module.Module
A Contrastive embedding loss.
It has been proposed in A Simple Framework for Contrastive Learning of Visual Representations.
Example:
import torch from torch.nn import functional as F from catalyst.contrib import NTXentLoss embeddings_left = F.normalize(torch.rand(256, 64, requires_grad=True)) embeddings_right = F.normalize(torch.rand(256, 64, requires_grad=True)) criterion = NTXentLoss(tau = 0.1) criterion(embeddings_left, embeddings_right)
- __init__(tau: float, reduction: str = 'mean') None [source]¶
- Parameters
tau – temperature
reduction (string, optional) – specifies the reduction to apply to the output:
"none"
|"mean"
|"sum"
."none"
: no reduction will be applied,"mean"
: the sum of the output will be divided by the number of positive pairs in the output,"sum"
: the output will be summed.
- Raises
ValueError – if reduction is not mean, sum or none
RocStarLoss¶
- class catalyst.contrib.losses.recsys.RocStarLoss(delta: float = 1.0, sample_size: int = 100, sample_size_gamma: int = 1000, update_gamma_each: int = 50)[source]¶
Bases:
catalyst.contrib.losses.recsys.PairwiseLoss
Roc-star loss function.
Smooth approximation for ROC-AUC. It has been proposed in Roc-star: An objective function for ROC-AUC that actually works.
Adapted from: https://github.com/iridiumblue/roc-star/issues/2
- Parameters
delta – Param from the article. Default:
1.0
.sample_size – Number of examples to take for ROC AUC approximation. Default:
100
.sample_size_gamma – Number of examples to take for Gamma parameter approximation. Default:
1000
.update_gamma_each – Number of steps after which to recompute gamma value. Default:
50
.
Example
import torch from catalyst.contrib.losses import recsys outputs = torch.randn(5, 1, requires_grad=True) targets = torch.randn(5, 1, requires_grad=True) output = recsys.RocStarLoss()(outputs, targets) output.backward()
- forward(outputs: torch.Tensor, targets: torch.Tensor) torch.Tensor [source]¶
Forward propagation method for the roc-star loss.
- Parameters
outputs – Tensor of model predictions in [0, 1] range. Shape
(B x 1)
.targets – Tensor of true labels in {0, 1}. Shape
(B x 1)
.
- Returns
computed loss
- training: bool¶
RSquareLoss¶
- class catalyst.contrib.losses.regression.RSquareLoss[source]¶
Bases:
torch.nn.modules.module.Module
- forward(outputs: torch.Tensor, targets: torch.Tensor) torch.Tensor [source]¶
Compute the loss.
- Parameters
outputs (torch.Tensor) – model outputs
targets (torch.Tensor) – targets
- Returns
computed loss
- Return type
torch.Tensor
- training: bool¶
SupervisedContrastiveLoss¶
- class catalyst.contrib.losses.supervised_contrastive.SupervisedContrastiveLoss(tau: float, reduction: str = 'mean', pos_aggregation='in')[source]¶
Bases:
torch.nn.modules.module.Module
A Contrastive embedding loss that uses targets.
It has been proposed in Supervised Contrastive Learning.
- __init__(tau: float, reduction: str = 'mean', pos_aggregation='in') None [source]¶
- Parameters
tau – temperature
reduction – specifies the reduction to apply to the output:
"none"
|"mean"
|"sum"
."none"
: no reduction will be applied,"mean"
: the sum of the output will be divided by the number of positive pairs in the output,"sum"
: the output will be summed.pos_aggregation – specifies the place of positive pairs aggregation:
"in"
|"out"
."in"
: maximization of log(average positive exponentiate similarity)"out"
: maximization of average positive similarity
- Raises
ValueError – if reduction is not mean, sum or none
ValueError – if positive aggregation is not in or out
TrevskyLoss¶
- class catalyst.contrib.losses.trevsky.TrevskyLoss(alpha: float, beta: Optional[float] = None, class_dim: int = 1, mode: str = 'macro', weights: Optional[List[float]] = None, eps: float = 1e-07)[source]¶
Bases:
torch.nn.modules.module.Module
The trevsky loss. TrevskyIndex = TP / (TP + alpha * FN + betta * FP) TrevskyLoss = 1 - TrevskyIndex
- __init__(alpha: float, beta: Optional[float] = None, class_dim: int = 1, mode: str = 'macro', weights: Optional[List[float]] = None, eps: float = 1e-07)[source]¶
- Parameters
alpha – false negative coefficient, bigger alpha bigger penalty for false negative. Must be in (0, 1)
beta – false positive coefficient, bigger alpha bigger penalty for false positive. Must be in (0, 1), if None beta = (1 - alpha)
class_dim – indicates class dimention (K) for
outputs
andtargets
tensors (default = 1)mode – class summation strategy. Must be one of [‘micro’, ‘macro’, ‘weighted’]. If mode=’micro’, classes are ignored, and metric are calculated generally. If mode=’macro’, metric are calculated separately and than are averaged over all classes. If mode=’weighted’, metric are calculated separately and than summed over all classes with weights.
weights – class weights(for mode=”weighted”)
eps – epsilon to avoid zero division
TripletMarginLossWithSampler¶
WARPLoss¶
- class catalyst.contrib.losses.recsys.WARPLoss(max_num_trials: Optional[int] = None)[source]¶
Bases:
catalyst.contrib.losses.recsys.ListwiseLoss
Weighted Approximate-Rank Pairwise (WARP) loss function.
It has been proposed in WSABIE: Scaling Up To Large Vocabulary Image Annotation paper.
WARP loss randomly sample output labels of a model, until it finds a pair which it knows are wrongly labelled and will then only apply an update to these two incorrectly labelled examples.
Adapted from: https://github.com/gabrieltseng/datascience-projects/blob/master/misc/warp.py
- Parameters
max_num_trials – Number of attempts allowed to find a violating negative example. In practice it means that we optimize for ranks 1 to max_num_trials-1.
Example:
import torch from catalyst.contrib.losses import recsys outputs = torch.randn(5, 3, requires_grad=True) targets = torch.randn(5, 3, requires_grad=True) output = recsys.WARPLoss()(outputs, targets) output.backward()
- forward(outputs: torch.Tensor, targets: torch.Tensor) torch.Tensor [source]¶
Forward propagation method for the WARP loss.
- Parameters
outputs – Iterable of tensors containing predictions for all items.
targets – Iterable of tensors containing true labels for all items.
- Returns
computed loss
- training: bool¶
Optimizers¶
AdamP¶
- class catalyst.contrib.optimizers.adamp.AdamP(params, lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, delta=0.1, wd_ratio=0.1, nesterov=False)[source]¶
Bases:
torch.optim.optimizer.Optimizer
Implements AdamP algorithm.
The original Adam algorithm was proposed in Adam: A Method for Stochastic Optimization. The AdamP variant was proposed in Slowing Down the Weight Norm Increase in Momentum-based Optimizers.
- Parameters
params – iterable of parameters to optimize or dicts defining parameter groups
lr (float, optional) – learning rate (default: 1e-3)
betas (Tuple[float, float], optional) – coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999))
eps (float, optional) – term added to the denominator to improve numerical stability (default: 1e-8)
weight_decay (float, optional) – weight decay coefficient (default: 0)
delta – threshold that determines whether a set of parameters is scale invariant or not (default: 0.1)
wd_ratio – relative weight decay applied on scale-invariant parameters compared to that applied on scale-variant parameters (default: 0.1)
nesterov (boolean, optional) – enables Nesterov momentum (default: False)
Original source code: https://github.com/clovaai/AdamP
- __init__(params, lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, delta=0.1, wd_ratio=0.1, nesterov=False)[source]¶
- Parameters
params – iterable of parameters to optimize or dicts defining parameter groups
lr (float, optional) – learning rate (default: 1e-3)
betas (Tuple[float, float], optional) – coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999))
eps (float, optional) – term added to the denominator to improve numerical stability (default: 1e-8)
weight_decay (float, optional) – weight decay coefficient (default: 1e-2)
delta – threshold that determines whether a set of parameters is scale invariant or not (default: 0.1)
wd_ratio – relative weight decay applied on scale-invariant parameters compared to that applied on scale-variant parameters (default: 0.1)
nesterov (boolean, optional) – enables Nesterov momentum (default: False)
Lamb¶
- class catalyst.contrib.optimizers.lamb.Lamb(params, lr: Optional[float] = 0.001, betas: Optional[Tuple[float, float]] = (0.9, 0.999), eps: Optional[float] = 1e-06, weight_decay: Optional[float] = 0.0, adam: Optional[bool] = False)[source]¶
Bases:
torch.optim.optimizer.Optimizer
Implements Lamb algorithm.
It has been proposed in Training BERT in 76 minutes.
- __init__(params, lr: Optional[float] = 0.001, betas: Optional[Tuple[float, float]] = (0.9, 0.999), eps: Optional[float] = 1e-06, weight_decay: Optional[float] = 0.0, adam: Optional[bool] = False)[source]¶
- Parameters
params – iterable of parameters to optimize or dicts defining parameter groups
lr (float, optional) – learning rate (default: 1e-3)
betas (Tuple[float, float], optional) – coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999))
eps (float, optional) – term added to the denominator to improve numerical stability (default: 1e-8)
weight_decay (float, optional) – weight decay (L2 penalty) (default: 0)
adam (bool, optional) – always use trust ratio = 1, which turns this into Adam. Useful for comparison purposes.
- Raises
ValueError – if invalid learning rate, epsilon value or betas.
Lookahead¶
- class catalyst.contrib.optimizers.lookahead.Lookahead(optimizer: torch.optim.optimizer.Optimizer, k: int = 5, alpha: float = 0.5)[source]¶
Bases:
torch.optim.optimizer.Optimizer
Implements Lookahead algorithm.
It has been proposed in Lookahead Optimizer: k steps forward, 1 step back.
Adapted from: https://github.com/alphadl/lookahead.pytorch (MIT License)
QHAdamW¶
- class catalyst.contrib.optimizers.qhadamw.QHAdamW(params, lr=0.001, betas=(0.995, 0.999), nus=(0.7, 1.0), weight_decay=0.0, eps=1e-08)[source]¶
Bases:
torch.optim.optimizer.Optimizer
Implements QHAdam algorithm.
Combines QHAdam algorithm that was proposed in Quasi-hyperbolic momentum and Adam for deep learning with weight decay decoupling from Decoupled Weight Decay Regularization paper.
Example
>>> optimizer = QHAdamW( ... model.parameters(), ... lr=3e-4, nus=(0.8, 1.0), betas=(0.99, 0.999)) >>> optimizer.zero_grad() >>> loss_fn(model(input), target).backward() >>> optimizer.step()
Adapted from: https://github.com/iprally/qhadamw-pytorch/blob/master/qhadamw.py (MIT License)
- __init__(params, lr=0.001, betas=(0.995, 0.999), nus=(0.7, 1.0), weight_decay=0.0, eps=1e-08)[source]¶
- Parameters
params (iterable) – iterable of parameters to optimize or dicts defining parameter groups
lr (float, optional) – learning rate (\(\alpha\) from the paper) (default: 1e-3)
betas (Tuple[float, float], optional) – coefficients used for computing running averages of the gradient and its square (default: (0.995, 0.999))
nus (Tuple[float, float], optional) – immediate discount factors used to estimate the gradient and its square (default: (0.7, 1.0))
eps (float, optional) – term added to the denominator to improve numerical stability (default: 1e-8)
weight_decay (float, optional) – weight decay (L2 regularization coefficient, times two) (default: 0.0)
- Raises
ValueError – if invalid learning rate, epsilon value, betas or weight_decay value.
RAdam¶
- class catalyst.contrib.optimizers.radam.RAdam(params, lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0)[source]¶
Bases:
torch.optim.optimizer.Optimizer
Implements RAdam algorithm.
It has been proposed in On the Variance of the Adaptive Learning Rate and Beyond.
@TODO: Docs (add Example). Contribution is welcome
Adapted from: https://github.com/LiyuanLucasLiu/RAdam (Apache-2.0 License)
Ralamb¶
- class catalyst.contrib.optimizers.ralamb.Ralamb(params: Iterable, lr: float = 0.001, betas: Tuple[float, float] = (0.9, 0.999), eps: float = 1e-08, weight_decay: float = 0)[source]¶
Bases:
torch.optim.optimizer.Optimizer
RAdam optimizer with LARS/LAMB tricks.
Adapted from: https://github.com/mgrankin/over9000/blob/master/ralamb.py (Apache-2.0 License)
- __init__(params: Iterable, lr: float = 0.001, betas: Tuple[float, float] = (0.9, 0.999), eps: float = 1e-08, weight_decay: float = 0)[source]¶
- Parameters
params – iterable of parameters to optimize or dicts defining parameter groups
lr (float, optional) – learning rate (default: 1e-3)
betas (Tuple[float, float], optional) – coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999))
eps (float, optional) – term added to the denominator to improve numerical stability (default: 1e-8)
weight_decay (float, optional) – weight decay (L2 penalty) (default: 0)
SGDP¶
- class catalyst.contrib.optimizers.sgdp.SGDP(params, lr=<required parameter>, momentum=0, weight_decay=0, dampening=0, nesterov=False, eps=1e-08, delta=0.1, wd_ratio=0.1)[source]¶
Implements SGDP algorithm.
The SGDP variant was proposed in Slowing Down the Weight Norm Increase in Momentum-based Optimizers.
- Parameters
params – iterable of parameters to optimize or dicts defining parameter groups
lr – learning rate
momentum (float, optional) – momentum factor (default: 0)
weight_decay (float, optional) – weight decay (L2 penalty) (default: 0)
dampening (float, optional) – dampening for momentum (default: 0)
nesterov (bool, optional) – enables Nesterov momentum (default: False)
eps (float, optional) – term added to the denominator to improve numerical stability (default: 1e-8)
delta – threshold that determines whether a set of parameters is scale invariant or not (default: 0.1)
wd_ratio – relative weight decay applied on scale-invariant parameters compared to that applied on scale-variant parameters (default: 0.1)
- __init__(params, lr=<required parameter>, momentum=0, weight_decay=0, dampening=0, nesterov=False, eps=1e-08, delta=0.1, wd_ratio=0.1)[source]¶
- Parameters
params – iterable of parameters to optimize or dicts defining parameter groups
lr – learning rate
momentum (float, optional) – momentum factor (default: 0)
weight_decay (float, optional) – weight decay (L2 penalty) (default: 0)
dampening (float, optional) – dampening for momentum (default: 0)
nesterov (bool, optional) – enables Nesterov momentum (default: False)
eps (float, optional) – term added to the denominator to improve numerical stability (default: 1e-8)
delta – threshold that determines whether a set of parameters is scale invariant or not (default: 0.1)
wd_ratio – relative weight decay applied on scale-invariant parameters compared to that applied on scale-variant parameters (default: 0.1)
Schedulers¶
OneCycleLRWithWarmup¶
- class catalyst.contrib.schedulers.onecycle.OneCycleLRWithWarmup(optimizer: torch.optim.optimizer.Optimizer, num_steps: int, lr_range=(1.0, 0.005), init_lr: Optional[float] = None, warmup_steps: int = 0, warmup_fraction: Optional[float] = None, decay_steps: int = 0, decay_fraction: Optional[float] = None, momentum_range=(0.8, 0.99, 0.999), init_momentum: Optional[float] = None)[source]¶
Bases:
catalyst.contrib.schedulers.base.BatchScheduler
OneCycle scheduler with warm-up & lr decay stages.
First stage increases lr from
init_lr
tomax_lr
, and calledwarmup
. Also it decreases momentum frominit_momentum
tomin_momentum
. Takeswarmup_steps
stepsSecond is
annealing
stage. Decrease lr frommax_lr
tomin_lr
, Increase momentum frommin_momentum
tomax_momentum
.Third, optional, lr decay.
- __init__(optimizer: torch.optim.optimizer.Optimizer, num_steps: int, lr_range=(1.0, 0.005), init_lr: Optional[float] = None, warmup_steps: int = 0, warmup_fraction: Optional[float] = None, decay_steps: int = 0, decay_fraction: Optional[float] = None, momentum_range=(0.8, 0.99, 0.999), init_momentum: Optional[float] = None)[source]¶
- Parameters
optimizer – PyTorch optimizer
num_steps – total number of steps
lr_range – tuple with two or three elements (max_lr, min_lr, [final_lr])
init_lr (float, optional) – initial lr
warmup_steps – count of steps for warm-up stage
warmup_fraction (float, optional) – fraction in [0; 1) to calculate number of warmup steps. Cannot be set together with
warmup_steps
decay_steps – count of steps for lr decay stage
decay_fraction (float, optional) – fraction in [0; 1) to calculate number of decay steps. Cannot be set together with
decay_steps
momentum_range – tuple with two or three elements (min_momentum, max_momentum, [final_momentum])
init_momentum (float, optional) – initial momentum