Callbacks¶
Run-based¶
BackwardCallback¶
- class catalyst.callbacks.backward.BackwardCallback(metric_key: str, grad_clip_fn: Optional[Union[str, Callable]] = None, grad_clip_params: Optional[Dict] = None, log_gradient: bool = False)[source]¶
Bases:
catalyst.core.callback.IBackwardCallback
Optimizer callback, abstraction over backward step.
- Parameters
metric_key – a key to get loss from
runner.batch_metrics
grad_clip_fn – callable gradient cliping function or it’s name
grad_clip_params – key-value parameters for grad_clip_fn
log_gradient – boolean flag to log gradient norm to
runner.batch_metrics
Note
Please follow the minimal examples sections for more use cases.
BatchOverfitCallback¶
- class catalyst.callbacks.batch_overfit.BatchOverfitCallback(**kwargs)[source]¶
Bases:
catalyst.core.callback.Callback
Callback to overfit loaders with specified number of batches. By default we use
1
batch for loader.- Parameters
kwargs – loader names and their number of batches to overfit.
For example, if you have
train
,train_additional
,valid
andvalid_additional
loaders and wan’t to overfittrain
on first 1 batch,train_additional
on first 2 batches,valid
- on first 20% of batches andvalid_additional
- on 50% batches:from catalyst.dl import SupervisedRunner, BatchOverfitCallback runner = SupervisedRunner() runner.train( ... loaders={ "train": ..., "train_additional": ..., "valid": ..., "valid_additional":... } ... callbacks=[ ... BatchOverfitCallback( train_additional=2, valid=0.2, valid_additional=0.5 ), ... ] ... )
Minimal working example
import torch from torch.utils.data import DataLoader, TensorDataset from catalyst import dl # data num_samples, num_features = int(1e4), int(1e1) X, y = torch.rand(num_samples, num_features), torch.rand(num_samples) dataset = TensorDataset(X, y) loader = DataLoader(dataset, batch_size=32, num_workers=1) loaders = {"train": loader, "valid": loader} # model, criterion, optimizer, scheduler model = torch.nn.Linear(num_features, 1) criterion = torch.nn.MSELoss() optimizer = torch.optim.Adam(model.parameters()) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [3, 6]) # model training runner = dl.SupervisedRunner() runner.train( model=model, criterion=criterion, optimizer=optimizer, scheduler=scheduler, loaders=loaders, logdir="./logdir", num_epochs=8, verbose=True, callbacks=[dl.BatchOverfitCallback(train=10, valid=0.5)] )
BatchTransformCallback¶
- class catalyst.callbacks.batch_transform.BatchTransformCallback(transform: Union[Callable, str], scope: str, input_key: Optional[Union[List[str], str]] = None, output_key: Optional[Union[List[str], str]] = None, transform_kwargs: Optional[Dict[str, Any]] = None)[source]¶
Bases:
catalyst.core.callback.Callback
Preprocess your batch with specified function.
- Parameters
transform – Function to apply. If string will get function from registry.
scope –
"on_batch_end"
(post-processing model output) or"on_batch_start"
(pre-processing model input).input_key – Keys in batch dict to apply function. Defaults to
None
.output_key – Keys for output. If None then will apply function inplace to
keys_to_apply
. Defaults toNone
.transform_kwargs – Kwargs for transform.
- Raises
TypeError – When keys is not str or a list. When
scope
is not in["on_batch_end", "on_batch_start"]
.
Examples
import torch from torch.utils.data import DataLoader, TensorDataset from catalyst import dl # sample data num_users, num_features, num_items = int(1e4), int(1e1), 10 X = torch.rand(num_users, num_features) y = (torch.rand(num_users, num_items) > 0.5).to(torch.float32) # pytorch loaders dataset = TensorDataset(X, y) loader = DataLoader(dataset, batch_size=32, num_workers=1) loaders = {"train": loader, "valid": loader} # model, criterion, optimizer, scheduler model = torch.nn.Linear(num_features, num_items) criterion = torch.nn.BCEWithLogitsLoss() optimizer = torch.optim.Adam(model.parameters()) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [2]) # model training runner = SupervisedRunner() runner.train( model=model, criterion=criterion, optimizer=optimizer, scheduler=scheduler, loaders=loaders, num_epochs=3, verbose=True, callbacks=[ dl.BatchTransformCallback( input_key="logits", output_key="scores", transform="F.sigmoid" ), dl.CriterionCallback( input_key="logits", target_key="targets", metric_key="loss" ), dl.OptimizerCallback(metric_key="loss"), dl.SchedulerCallback(), dl.CheckpointCallback( logdir="./logs", loader_key="valid", metric_key="map01", minimize=False ), ] )
class CustomRunner(dl.Runner): def handle_batch(self, batch): logits = self.model( batch["features"].view(batch["features"].size(0), -1) ) loss = F.cross_entropy(logits, batch["targets"]) accuracy01, accuracy03 = metrics.accuracy( logits, batch["targets"], topk=(1, 3) ) self.batch_metrics.update({ "loss": loss, "accuracy01":accuracy01, "accuracy03": accuracy03 }) if self.is_train_loader: self.engine.backward(loss) self.optimizer.step() self.optimizer.zero_grad() class MnistDataset(torch.utils.data.Dataset): def __init__(self, dataset): self.dataset = dataset def __getitem__(self, item): return { "features": self.dataset[item][0], "targets": self.dataset[item][1] } def __len__(self): return len(self.dataset) model = torch.nn.Linear(28 * 28, 10) optimizer = torch.optim.Adam(model.parameters(), lr=0.02) loaders = { "train": DataLoader( MnistDataset( MNIST(os.getcwd(), train=False) ), batch_size=32, ), "valid": DataLoader( MnistDataset( MNIST(os.getcwd(), train=False) ), batch_size=32, ), } transrorms = [ augmentation.RandomAffine(degrees=(-15, 20), scale=(0.75, 1.25)), ] runner = CustomRunner() # model training runner.train( model=model, optimizer=optimizer, loaders=loaders, logdir="./logs", num_epochs=5, verbose=False, load_best_on_end=True, check=True, callbacks=[ BatchTransformCallback( transform=transrorms, scope="on_batch_start", input_key="features" ) ], )
... callbacks: transform: _target_: BatchTransformCallback transform: catalyst.ToTensor scope: on_batch_start input_key: features
- __init__(transform: Union[Callable, str], scope: str, input_key: Optional[Union[List[str], str]] = None, output_key: Optional[Union[List[str], str]] = None, transform_kwargs: Optional[Dict[str, Any]] = None)[source]¶
Preprocess your batch with specified function.
- Parameters
transform – Function to apply. If string will get function from registry.
scope –
"on_batch_end"
(post-processing model output) or"on_batch_start"
(pre-processing model input).input_key – Keys in batch dict to apply function. Defaults to
None
.output_key – Keys for output. If None then will apply function inplace to
keys_to_apply
. Defaults toNone
.transform_kwargs – Kwargs for transform.
- Raises
TypeError – When keys is not str or a list. When
scope
is not in["on_batch_end", "on_batch_start"]
.
CheckpointCallback¶
- class catalyst.callbacks.checkpoint.CheckpointCallback(logdir: str, loader_key: Optional[str] = None, metric_key: Optional[str] = None, minimize: Optional[bool] = None, topk: int = 1, mode: str = 'model', save_last: bool = True, save_best: bool = True, resume_model: Optional[str] = None, resume_runner: Optional[str] = None, load_best_on_end: bool = False)[source]¶
Bases:
catalyst.core.callback.ICheckpointCallback
Checkpoint callback to save/restore your model/runner.
- Parameters
logdir – directory to store checkpoints
loader_key – loader key for best model selection (based on metric score over the dataset)
metric_key – metric key for best model selection (based on metric score over the dataset)
minimize – boolean flag to minimize the required metric
topk – number of best checkpoint to keep
mode – checkpoint type to save,
model
orrunner
. (default: model)save_last – boolean flag to save extra last checkpoint as
{mode}.last.pth
save_best – boolean flag to save extra best checkpoint as
{mode}.best.pth
resume_model – path to model checkpoint to load on experiment start
resume_runner – path to runner checkpoint to load on experiment start
load_best_on_end – boolean flag to load best model on experiment end
- __init__(logdir: str, loader_key: Optional[str] = None, metric_key: Optional[str] = None, minimize: Optional[bool] = None, topk: int = 1, mode: str = 'model', save_last: bool = True, save_best: bool = True, resume_model: Optional[str] = None, resume_runner: Optional[str] = None, load_best_on_end: bool = False)[source]¶
Init.
- on_epoch_end_best(runner: catalyst.core.runner.IRunner) None [source]¶
Event handler.
- on_epoch_end_last(runner: catalyst.core.runner.IRunner) None [source]¶
Event handler.
CheckRunCallback¶
- class catalyst.callbacks.misc.CheckRunCallback(num_batch_steps: int = 3, num_epoch_steps: int = 3)[source]¶
Bases:
catalyst.core.callback.Callback
Executes only a pipeline part from the run.
- Parameters
num_batch_steps – number of batches to iterate in epoch
num_epoch_steps – number of epoch to perform in an experiment
Minimal working example (Notebook API):
import torch from torch.utils.data import DataLoader, TensorDataset from catalyst import dl # data num_samples, num_features = int(1e4), int(1e1) X, y = torch.rand(num_samples, num_features), torch.rand(num_samples) dataset = TensorDataset(X, y) loader = DataLoader(dataset, batch_size=32, num_workers=1) loaders = {"train": loader, "valid": loader} # model, criterion, optimizer, scheduler model = torch.nn.Linear(num_features, 1) criterion = torch.nn.MSELoss() optimizer = torch.optim.Adam(model.parameters()) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [3, 6]) # model training runner = dl.SupervisedRunner() runner.train( model=model, criterion=criterion, optimizer=optimizer, scheduler=scheduler, loaders=loaders, logdir="./logdir", num_epochs=8, verbose=True, callbacks=[ dl.CheckRunCallback(num_batch_steps=3, num_epoch_steps=3) ] )
ControlFlowCallbackWrapper¶
- class catalyst.callbacks.control_flow.ControlFlowCallbackWrapper(base_callback: catalyst.core.callback.Callback, epochs: Optional[Union[int, Sequence[int]]] = None, ignore_epochs: Optional[Union[int, Sequence[int]]] = None, loaders: Optional[Union[str, Sequence[str], Mapping[str, Union[int, Sequence[int]]]]] = None, ignore_loaders: Optional[Union[str, Sequence[str], Mapping[str, Union[int, Sequence[int]]]]] = None, filter_fn: Optional[Union[str, Callable[[int, str], bool]]] = None)[source]¶
Bases:
catalyst.core.callback.CallbackWrapper
Enable/disable callback execution on different epochs and loaders.
- Parameters
base_callback – callback to wrap
epochs –
epochs where need to enable callback, on other epochs callback will be disabled.
If passed int/float then callback will be enabled with period specified as epochs value (epochs expression
epoch_number % epochs == 0
) and disabled on other epochs.If passed list of epochs then will be executed callback on specified epochs.
Default value is
None
.ignore_epochs: –
epochs where: need to disable callback, on other epochs callback will be enabled.
If passed int/float then callback will be disabled with period specified as epochs value (epochs expression
epoch_number % epochs != 0
) and enabled on other epochs.If passed list of epochs then will be disabled callback on specified epochs.
Default value is
None
.loaders (str/Sequence[str]/Mapping[str, int/Sequence[str]]) –
loaders where should be enabled callback, on other loaders callback will be disabled.
If passed string object then will be disabled callback for loader with specified name.
If passed list/tuple of strings then will be disabled callback for loaders with specified names.
If passed dictionary where key is a string and values int or list of integers then callback will be disabled on epochs (dictionary value) for specified loader (dictionary key).
Default value is
None
.ignore_loaders (str/Sequence[str]/Mapping[str, int/Sequence[str]]) –
loader names where should be disabled callback, on other loaders callback will be enabled.
If passed string object then will be disabled callback for loader with specified name.
If passed list/tuple of strings then will be disabled callback for loaders with specified names.
If passed dictionary where key is a string and values int or list of integers then callback will be disabled on epochs (dictionary value) for specified loader (dictionary key).
Default value is
None
.filter_fn (str or Callable[[int, str], bool]) –
function to use instead of
loaders
orepochs
arguments.If the object passed to a
filter_fn
is a string then it will be interpreted as python code. Expected lambda function with two arguments: epoch number (int) and loader name (str). This function should returnTrue
if callback should be enabled on some condition.If passed callable object then it should accept two arguments: epoch number (int) and loader name (str). It should return
True
if callback should be enabled on some condition othervise should returnFalse
.Default value is
None
.Examples:
# enable callback on all loaders # exept "train" loader every 2 epochs ControlFlowCallback( ... filter_fn=lambda e, l: l != "train" and e % 2 == 0 ... ) # or with string equivalent ControlFlowCallback( ... filter_fn="lambda e, l: l != 'train' and e % 2 == 0" ... )
Note
Please run experiment with
check option
to check if everything works as expected with this callback.For example, if you don’t want to compute loss on a validation you can ignore
CriterionCallback
, for notebook API need to wrap callback:import torch from torch.utils.data import DataLoader, TensorDataset from catalyst.dl import ( SupervisedRunner, AccuracyCallback, CriterionCallback, ControlFlowCallback, ) num_samples, num_features = 10_000, 10 n_classes = 10 X = torch.rand(num_samples, num_features) y = torch.randint(0, n_classes, [num_samples]) loader = DataLoader(TensorDataset(X, y), batch_size=32, num_workers=1) loaders = {"train": loader, "valid": loader} model = torch.nn.Linear(num_features, n_classes) criterion = torch.nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters()) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [3, 6]) runner = SupervisedRunner() runner.train( model=model, criterion=criterion, optimizer=optimizer, scheduler=scheduler, loaders=loaders, logdir="./logdir", num_epochs=5, verbose=False, valid_metric="accuracy03", minimize_metric=False, callbacks=[ AccuracyCallback( accuracy_args=[1, 3, 5] ), ControlFlowCallback( base_callback=CriterionCallback(), ignore_loaders="valid" # or loaders="train" ) ] )
- __init__(base_callback: catalyst.core.callback.Callback, epochs: Optional[Union[int, Sequence[int]]] = None, ignore_epochs: Optional[Union[int, Sequence[int]]] = None, loaders: Optional[Union[str, Sequence[str], Mapping[str, Union[int, Sequence[int]]]]] = None, ignore_loaders: Optional[Union[str, Sequence[str], Mapping[str, Union[int, Sequence[int]]]]] = None, filter_fn: Optional[Union[str, Callable[[int, str], bool]]] = None)[source]¶
Init.
CriterionCallback¶
- class catalyst.callbacks.criterion.CriterionCallback(input_key: str, target_key: str, metric_key: str, criterion_key: Optional[str] = None, prefix: Optional[str] = None, suffix: Optional[str] = None)[source]¶
Bases:
catalyst.callbacks.metrics.functional_metric.FunctionalMetricCallback
,catalyst.core.callback.ICriterionCallback
Criterion callback, abstraction over criterion step.
- Parameters
input_key – input key to use for metric calculation, specifies our y_pred
target_key – output key to use for metric calculation, specifies our y_true
metric_key – key to store computed metric in
runner.batch_metrics
dictionarycriterion_key – A key to take a criterion in case there are several of them, and they are in a dictionary format.
Note
Please follow the minimal examples sections for more use cases.
EarlyStoppingCallback¶
- class catalyst.callbacks.misc.EarlyStoppingCallback(patience: int, loader_key: str, metric_key: str, minimize: bool, min_delta: float = 1e-06)[source]¶
Bases:
catalyst.callbacks.misc.IEpochMetricHandlerCallback
Early stop based on metric.
- Parameters
patience – number of epochs with no improvement after which training will be stopped.
loader_key – loader key for early stopping (based on metric score over the dataset)
metric_key – metric key for early stopping (based on metric score over the dataset)
minimize – if
True
then expected that metric should decrease and early stopping will be performed only when metric stops decreasing. IfFalse
then expected that metric should increase. Default valueTrue
.min_delta – minimum change in the monitored metric to qualify as an improvement, i.e. an absolute change of less than min_delta, will count as no improvement, default value is
1e-6
.
Minimal working example (Notebook API):
import torch from torch.utils.data import DataLoader, TensorDataset from catalyst import dl # data num_samples, num_features = int(1e4), int(1e1) X, y = torch.rand(num_samples, num_features), torch.rand(num_samples) dataset = TensorDataset(X, y) loader = DataLoader(dataset, batch_size=32, num_workers=1) loaders = {"train": loader, "valid": loader} # model, criterion, optimizer, scheduler model = torch.nn.Linear(num_features, 1) criterion = torch.nn.MSELoss() optimizer = torch.optim.Adam(model.parameters()) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [3, 6]) # model training runner = dl.SupervisedRunner() runner.train( model=model, criterion=criterion, optimizer=optimizer, scheduler=scheduler, loaders=loaders, logdir="./logdir", num_epochs=100, callbacks=[ dl.EarlyStoppingCallback( loader_key="valid", metric_key="loss", minimize=True, patience=3, min_delta=1e-2 ) ] )
LRFinder¶
- class catalyst.callbacks.scheduler.LRFinder(final_lr: float, scale: str = 'log', num_steps: Optional[int] = None, optimizer_key: Optional[str] = None)[source]¶
Bases:
catalyst.callbacks.scheduler.ILRUpdater
Helps you find an optimal learning rate for a model, as per suggestion of Cyclical Learning Rates for Training Neural Networks paper. Learning rate is increased in linear or log scale, depending on user input.
See How Do You Find A Good Learning Rate article for details.
- __init__(final_lr: float, scale: str = 'log', num_steps: Optional[int] = None, optimizer_key: Optional[str] = None)[source]¶
- Parameters
final_lr – final learning rate to try with
scale – learning rate increasing scale (“log” or “linear”)
num_steps – number of batches to try, if None - whole loader would be used.
optimizer_key – which optimizer key to use for learning rate scheduling
- Raises
NotImplementedError – if invalid scale value.
MetricAggregationCallback¶
- class catalyst.callbacks.metric_aggregation.MetricAggregationCallback(metric_key: str, metrics: Optional[Union[str, List[str], Dict[str, float]]] = None, mode: Union[str, Callable] = 'mean', scope: str = 'batch', multiplier: float = 1.0)[source]¶
Bases:
catalyst.core.callback.Callback
A callback to aggregate several metrics in one value.
- Parameters
metric_key – new key for aggregated metric.
metrics (Union[str, List[str], Dict[str, float]]) – If not None, it aggregates only the values from the metric by these keys. for
weighted_sum
aggregation it must be a Dict[str, float].mode – function for aggregation. Must be either
sum
,mean
orweighted_sum
or user’s function to aggregate metrics. This function must get dict of metrics and runner and return aggregated metric. It can be useful for complicated fine tuning with different losses that depends on epochs and loader or something alsoscope – type of metric. Must be either
batch
orloader
multiplier – scale factor for the aggregated metric.
Python example - loss is a weighted sum of cross entropy loss and binary cross entropy loss:
import torch from torch.utils.data import DataLoader, TensorDataset from catalyst import dl # data num_samples, num_features, num_classes = int(1e4), int(1e1), 4 X = torch.rand(num_samples, num_features) y = (torch.rand(num_samples,) * num_classes).to(torch.int64) dataset = TensorDataset(X, y) loader = DataLoader(dataset, batch_size=32, num_workers=1) loaders = {"train": loader, "valid": loader} # model, criterion, optimizer, scheduler model = torch.nn.Linear(num_features, num_classes) criterion = { "ce": torch.nn.CrossEntropyLoss(), "bce": torch.nn.BCEWithLogitsLoss() } optimizer = torch.optim.Adam(model.parameters()) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [2]) # runner class CustomRunner(dl.Runner): def handle_batch(self, batch): x, y = batch logits = self.model(x) num_classes = logits.shape[-1] targets_onehot = torch.nn.functional.one_hot(y, num_classes=num_classes) self.batch = { "features": x, "logits": logits, "targets": y, "targets_onehot": targets_onehot.float(), } # training runner = CustomRunner() runner.train( model=model, criterion=criterion, optimizer=optimizer, scheduler=scheduler, loaders=loaders, logdir="./logdir", valid_loader="valid", valid_metric="loss", minimize_valid_metric=True, num_epochs=3, callbacks=[ dl.AccuracyCallback( input_key="logits", target_key="targets", num_classes=num_classes ), dl.CriterionCallback( input_key="logits", target_key="targets", metric_key="loss_ce", criterion_key="ce", ), dl.CriterionCallback( input_key="logits", target_key="targets_onehot", metric_key="loss_bce", criterion_key="bce", ), # loss aggregation dl.MetricAggregationCallback( metric_key="loss", metrics={"loss_ce": 0.6, "loss_bce": 0.4}, mode="weighted_sum", ), dl.OptimizerCallback(metric_key="loss"), ], )
MixupCallback¶
- class catalyst.callbacks.mixup.MixupCallback(keys: Union[str, List[str]], alpha=0.2, mode='replace', on_train_only=True)[source]¶
Bases:
catalyst.core.callback.Callback
Callback to do mixup augmentation. More details about mixin can be found in the paper mixup: Beyond Empirical Risk Minimization: https://arxiv.org/abs/1710.09412 .
- Parameters
keys – batch keys to which you want to apply augmentation
alpha – beta distribution a=b parameters. Must be >=0. The more alpha closer to zero the less effect of the mixup.
mode – mode determines the method of use. Must be in [“replace”, “add”]. If “replace” then replaces the batch with a mixed one, while the batch size is not changed. If “add”, concatenates mixed examples to the current ones, the batch size increases by 2 times.
on_train_only – apply to train only. As the mixup use the proxy inputs, the targets are also proxy. We are not interested in them, are we? So, if
on_train_only
isTrue
use a standard output/metric for validation.
Examples:
from typing import Any, Dict import os import numpy as np import torch from torch import nn from torch.utils.data import DataLoader from catalyst import dl from catalyst.callbacks import MixupCallback from catalyst.contrib.datasets import MNIST class SimpleNet(nn.Module): def __init__(self, in_channels, in_hw, out_features): super().__init__() self.encoder = nn.Sequential(nn.Conv2d(in_channels, in_channels, 3, 1, 1), nn.Tanh()) self.clf = nn.Linear(in_channels * in_hw * in_hw, out_features) def forward(self, x): features = self.encoder(x) features = features.view(features.size(0), -1) logits = self.clf(features) return logits class SimpleDataset(torch.utils.data.Dataset): def __init__(self, train: bool = False): self.mnist = MNIST(os.getcwd(), train=train) def __len__(self) -> int: return len(self.mnist) def __getitem__(self, idx: int) -> Dict[str, Any]: x, y = self.mnist.__getitem__(idx) y_one_hot = np.zeros(10) y_one_hot[y] = 1 return {"image": x, "clf_targets": y, "clf_targets_one_hot": torch.Tensor(y_one_hot)} model = SimpleNet(1, 28, 10) criterion = torch.nn.BCEWithLogitsLoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.02) loaders = { "train": DataLoader(SimpleDataset(train=True), batch_size=32), "valid": DataLoader(SimpleDataset(train=False), batch_size=32), } class CustomRunner(dl.Runner): def handle_batch(self, batch): image = batch["image"] clf_logits = self.model(image) self.batch["clf_logits"] = clf_logits runner = CustomRunner() runner.train( loaders=loaders, model=model, criterion=criterion, optimizer=optimizer, logdir="./logdir14", num_epochs=2, verbose=True, valid_loader="valid", valid_metric="loss", minimize_valid_metric=True, callbacks={ "mixup": MixupCallback(keys=["image", "clf_targets_one_hot"]), "criterion": dl.CriterionCallback( metric_key="loss", input_key="clf_logits", target_key="clf_targets_one_hot" ), "backward": dl.BackwardCallback(metric_key="loss"), "optimizer": dl.OptimizerCallback(metric_key="loss"), "classification": dl.ControlFlowCallback( dl.PrecisionRecallF1SupportCallback( input_key="clf_logits", target_key="clf_targets", num_classes=10 ), ignore_loaders="train", ), }, )
OptimizerCallback¶
- class catalyst.callbacks.optimizer.OptimizerCallback(metric_key: str, optimizer_key: Optional[str] = None, accumulation_steps: int = 1, grad_clip_fn: Optional[Union[str, Callable]] = None, grad_clip_params: Optional[Dict] = None)[source]¶
Bases:
catalyst.core.callback.IOptimizerCallback
Optimizer callback, abstraction over optimizer step.
- Parameters
metric_key – a key to get loss from
runner.batch_metrics
model_key – a key to select a model from
runner.model
in case there are several of them and they are in a dictionary format.optimizer_key – a key to select a optimizer from
runner.optimizer
in case there are several of them and they are in a dictionary format.accumulation_steps – number of steps before
optimizer.step()
grad_clip_fn – callable gradient cliping function or it’s name or
grad_clip_params – key-value parameters for grad_clip_fn
Note
Please follow the minimal examples sections for more use cases.
OptunaPruningCallback¶
- class catalyst.callbacks.optuna.OptunaPruningCallback(trial: optuna.trial._trial.Trial, loader_key: str, metric_key: str, minimize: bool, min_delta: float = 1e-06)[source]¶
Bases:
catalyst.core.callback.Callback
Optuna callback for pruning unpromising runs. This callback can be used for early stopping (pruning) unpromising runs.
- Parameters
trial – Optuna.Trial for the experiment.
loader_key – loader key for best model selection (based on metric score over the dataset)
metric_key – metric key for best model selection (based on metric score over the dataset)
minimize – boolean flag to minimize the required metric
min_delta – minimal delta for metric improve
import optuna from catalyst.dl import SupervisedRunner, OptunaPruningCallback # some python code ... def objective(trial: optuna.Trial): # standard optuna code for model and/or optimizer suggestion ... runner = SupervisedRunner() runner.train( model=model, loaders=loaders, criterion=criterion, optimizer=optimizer, callbacks=[ OptunaPruningCallback(trial) # some other callbacks ... ], num_epochs=num_epochs, ) return runner.best_valid_metrics[runner.valid_metric] study = optuna.create_study() study.optimize(objective, n_trials=100, timeout=600)
PeriodicLoaderCallback¶
- class catalyst.callbacks.periodic_loader.PeriodicLoaderCallback(valid_loader_key: str, valid_metric_key: str, minimize: bool, **kwargs)[source]¶
Bases:
catalyst.core.callback.Callback
Callback for runing loaders with specified period. To disable loader use
0
as period (if specified0
for validation loader then will be raised an error).- Parameters
kwargs – loader names and their run periods.
For example, if you have
train
,train_additional
,valid
andvalid_additional
loaders and wan’t to usetrain_additional
every 2 epochs,valid
- every 3 epochs andvalid_additional
- every 5 epochs:from catalyst.dl import SupervisedRunner, PeriodicLoaderCallback runner = SupervisedRunner() runner.train( ... loaders={ "train": ..., "train_additional": ..., "valid": ..., "valid_additional":... } ... callbacks=[ ... PeriodicLoaderCallback( train_additional=2, valid=3, valid_additional=5 ), ... ] ... )
ProfilerCallback¶
- class catalyst.callbacks.profiler.ProfilerCallback(loader_key: Optional[str] = None, epoch: int = 1, num_batches: Optional[int] = None, profiler_kwargs: Optional[Dict[str, Any]] = None, tensorboard_path: Optional[str] = None, export_chrome_trace_path: Optional[str] = None, export_stacks_kwargs: Optional[Dict[str, Any]] = None)[source]¶
Bases:
catalyst.core.callback.Callback
Profile specified epoch or some fixed number of batches.
- Parameters
loader_key – name of the loader to use for profiling. If
None
then will be used first loader from experiment.epoch – epoch number to use for profiling.
num_batches – number of batches to use in epoch to do a profiling. If
None
then will be used all batches in loader.profiler_kwargs – arguments to pass to a profiler. To get more info about possible arguments please use PyTorch profiler docs.
tensorboard_path – path where should be stored logs for tensorboard. If
None
then will be ignored.export_chrome_trace_path – path to export chrome trace. If
None
then will be ignored exporting chrome trace to a file.export_stacks_kwargs – arguments to pass to a
profiler.export_stacks
method. IfNone
then triggeringprofiler.export_stacks
will be avoided.
Example of using FlameGraph tool for
profiler.export_stacks
:git clone https://github.com/brendangregg/FlameGraph cd FlameGraph ./flamegraph.pl –title “CPU time” –countname “us.” profiler.stacks > perf_viz.svg
Note
Export to tensorboard and chrome trace mutually exclusive and specifying both of them will raise an error.
Example
import os import torch from torch import nn from torch.utils.data import DataLoader from catalyst import dl from catalyst.data import ToTensor from catalyst.contrib.datasets import MNIST loaders = { "train": DataLoader(MNIST(os.getcwd(), train=False), batch_size=32), "valid": DataLoader(MNIST(os.getcwd(), train=False), batch_size=32), } model = nn.Sequential(nn.Flatten(), nn.Linear(784, 10)) criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=1e-2) runner = dl.SupervisedRunner() runner.train( model=model, callbacks=[dl.ProfilerCallback( loader_key="train", epoch=3, profiler_kwargs=dict( activities=[ torch.profiler.ProfilerActivity.CPU, torch.profiler.ProfilerActivity.CUDA, ], on_trace_ready=torch.profiler.tensorboard_trace_handler( "./logs/tb_profile" ), with_stack=True, with_flops=True, ) )], loaders=loaders, criterion=criterion, optimizer=optimizer, num_epochs=5, logdir="./logs", )
SchedulerCallback¶
- class catalyst.callbacks.scheduler.SchedulerCallback(scheduler_key: Optional[str] = None, mode: Optional[str] = None, loader_key: Optional[str] = None, metric_key: Optional[str] = None)[source]¶
Bases:
catalyst.core.callback.ISchedulerCallback
Scheduler callback, abstraction over scheduler step.
- Parameters
scheduler_key – scheduler name, if
None
, default isNone
.mode – scheduler mode, should be one of
"epoch"
or"batch"
, default isNone
. IfNone
and object is instance ofBatchScheduler
orOneCycleLRWithWarmup
then will be used"batch"
otherwise -"epoch"
.loader_key – loader name to look after for ReduceLROnPlateau scheduler
metric_key – metric name to forward to scheduler object, if
None
then will be used main metric specified in experiment.
Note
Please follow the minimal examples sections for more use cases.
TimerCallback¶
- class catalyst.callbacks.misc.TimerCallback[source]¶
Bases:
catalyst.core.callback.Callback
Logs pipeline execution time.
import torch from torch.utils.data import DataLoader, TensorDataset from catalyst import dl # data num_samples, num_features = int(1e4), int(1e1) X, y = torch.rand(num_samples, num_features), torch.rand(num_samples) dataset = TensorDataset(X, y) loader = DataLoader(dataset, batch_size=32, num_workers=1) loaders = {"train": loader, "valid": loader} # model, criterion, optimizer, scheduler model = torch.nn.Linear(num_features, 1) criterion = torch.nn.MSELoss() optimizer = torch.optim.Adam(model.parameters()) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [3, 6]) # model training runner = dl.SupervisedRunner() runner.train( model=model, criterion=criterion, optimizer=optimizer, scheduler=scheduler, loaders=loaders, logdir="./logdir", num_epochs=1, verbose=True, callbacks=[dl.TimerCallback()] )
You should see additional extra metrics, such as:
_timer/_fps
- number handled samples per second during run._timer/batch_time
- time required for single batch handling._timer/data_time
- time required for single batch data preparation handling._timer/model_time
- time required for single batch model forwarding.
Moreover, you could use it throught
timeit=True
flag:import torch from torch.utils.data import DataLoader, TensorDataset from catalyst import dl # data num_samples, num_features = int(1e4), int(1e1) X, y = torch.rand(num_samples, num_features), torch.rand(num_samples) dataset = TensorDataset(X, y) loader = DataLoader(dataset, batch_size=32, num_workers=1) loaders = {"train": loader, "valid": loader} # model, criterion, optimizer, scheduler model = torch.nn.Linear(num_features, 1) criterion = torch.nn.MSELoss() optimizer = torch.optim.Adam(model.parameters()) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [3, 6]) # model training runner = dl.SupervisedRunner() runner.train( model=model, criterion=criterion, optimizer=optimizer, scheduler=scheduler, loaders=loaders, logdir="./logdir", num_epochs=1, verbose=True, timeit=True, )
TqdmCallback¶
- class catalyst.callbacks.misc.TqdmCallback[source]¶
Bases:
catalyst.core.callback.Callback
Logs the params into tqdm console.
Minimal working example (Notebook API):
import torch from torch.utils.data import DataLoader, TensorDataset from catalyst import dl # data num_samples, num_features = int(1e4), int(1e1) X, y = torch.rand(num_samples, num_features), torch.rand(num_samples) dataset = TensorDataset(X, y) loader = DataLoader(dataset, batch_size=32, num_workers=1) loaders = {"train": loader, "valid": loader} # model, criterion, optimizer, scheduler model = torch.nn.Linear(num_features, 1) criterion = torch.nn.MSELoss() optimizer = torch.optim.Adam(model.parameters()) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [3, 6]) # model training runner = dl.SupervisedRunner() runner.train( model=model, criterion=criterion, optimizer=optimizer, scheduler=scheduler, loaders=loaders, logdir="./logdir", num_epochs=1, callbacks=[dl.TqdmCallback()] )
You should see a tqdm progress bar during the training.
Moreover, you could use it throught
verbose=True
flag:import torch from torch.utils.data import DataLoader, TensorDataset from catalyst import dl # data num_samples, num_features = int(1e4), int(1e1) X, y = torch.rand(num_samples, num_features), torch.rand(num_samples) dataset = TensorDataset(X, y) loader = DataLoader(dataset, batch_size=32, num_workers=1) loaders = {"train": loader, "valid": loader} # model, criterion, optimizer, scheduler model = torch.nn.Linear(num_features, 1) criterion = torch.nn.MSELoss() optimizer = torch.optim.Adam(model.parameters()) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [3, 6]) # model training runner = dl.SupervisedRunner() runner.train( model=model, criterion=criterion, optimizer=optimizer, scheduler=scheduler, loaders=loaders, logdir="./logdir", num_epochs=1, verbose=True, )
- on_exception(runner: catalyst.core.runner.IRunner)[source]¶
Called if an Exception was raised.
Metric-based Interfaces¶
BatchMetricCallback¶
- class catalyst.callbacks.metric.BatchMetricCallback(metric: catalyst.metrics._metric.ICallbackBatchMetric, input_key: Union[str, Iterable[str], Dict[str, str]], target_key: Union[str, Iterable[str], Dict[str, str]], log_on_batch: bool = True)[source]¶
Bases:
catalyst.callbacks.metric._MetricCallback
BatchMetricCallback implements batch-based metrics update and computation over loader
- Parameters
metric – metric to calculate in callback
input_key – keys of tensors that should be used as inputs in metric calculation
target_key – keys of tensors that should be used as targets in metric calculation
log_on_batch – boolean flag to log computed metrics every batch
- __init__(metric: catalyst.metrics._metric.ICallbackBatchMetric, input_key: Union[str, Iterable[str], Dict[str, str]], target_key: Union[str, Iterable[str], Dict[str, str]], log_on_batch: bool = True) None [source]¶
Init BatchMetricCallback
LoaderMetricCallback¶
- class catalyst.callbacks.metric.LoaderMetricCallback(metric: catalyst.metrics._metric.ICallbackLoaderMetric, input_key: Union[str, Iterable[str], Dict[str, str]], target_key: Union[str, Iterable[str], Dict[str, str]])[source]¶
Bases:
catalyst.callbacks.metric._MetricCallback
LoaderMetricCallback implements loader-based metrics update and computation over loader
- Parameters
metric – metric to calculate in callback
input_key – keys of tensors that should be used as inputs in metric calculation
target_key – keys of tensors that should be used as targets in metric calculation
Metric-based¶
AccuracyCallback¶
- class catalyst.callbacks.metrics.accuracy.AccuracyCallback(input_key: str, target_key: str, topk: Optional[Iterable[int]] = None, num_classes: Optional[int] = None, log_on_batch: bool = True, prefix: Optional[str] = None, suffix: Optional[str] = None)[source]¶
Bases:
catalyst.callbacks.metric.BatchMetricCallback
Accuracy metric callback. Computes multiclass accuracy@topk for the specified values of topk.
- Parameters
input_key – input key to use for metric calculation, specifies our y_pred
target_key – output key to use for metric calculation, specifies our y_true
topk – specifies which accuracy@K to log
num_classes – number of classes to calculate
topk
ifaccuracy_args
is Nonelog_on_batch – boolean flag to log computed metrics every batch
prefix – metric prefix
suffix – metric suffix
Examples:
import torch from torch.utils.data import DataLoader, TensorDataset from catalyst import dl # sample data num_samples, num_features, num_classes = int(1e4), int(1e1), 4 X = torch.rand(num_samples, num_features) y = (torch.rand(num_samples,) * num_classes).to(torch.int64) # pytorch loaders dataset = TensorDataset(X, y) loader = DataLoader(dataset, batch_size=32, num_workers=1) loaders = {"train": loader, "valid": loader} # model, criterion, optimizer, scheduler model = torch.nn.Linear(num_features, num_classes) criterion = torch.nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters()) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [2]) # model training runner = dl.SupervisedRunner( input_key="features", output_key="logits", target_key="targets", loss_key="loss" ) runner.train( model=model, criterion=criterion, optimizer=optimizer, scheduler=scheduler, loaders=loaders, logdir="./logdir", num_epochs=3, valid_loader="valid", valid_metric="accuracy03", minimize_valid_metric=False, verbose=True, callbacks=[ dl.AccuracyCallback( input_key="logits", target_key="targets", num_classes=num_classes ), dl.PrecisionRecallF1SupportCallback( input_key="logits", target_key="targets", num_classes=num_classes ), dl.AUCCallback(input_key="logits", target_key="targets"), ], )
Note
Metric names depending on input parameters:
topk = None
—> seecatalyst.metrics.functional._misc.get_default_topk
topk = (1,)
—>"accuracy01"
topk = (1, 3)
—>"accuracy01"
,"accuracy03"
topk = (1, 3, 5)
—>"accuracy01"
,"accuracy03"
,"accuracy05"
You can find them in
runner.batch_metrics
,runner.loader_metrics
orrunner.epoch_metrics
.Note
Please follow the minimal examples sections for more use cases.
AUCCallback¶
- class catalyst.callbacks.metrics.auc.AUCCallback(input_key: str, target_key: str, compute_per_class_metrics: bool = False, prefix: Optional[str] = None, suffix: Optional[str] = None)[source]¶
Bases:
catalyst.callbacks.metric.LoaderMetricCallback
ROC-AUC metric callback.
- Parameters
input_key – input key to use for auc calculation, specifies our
y_true
.target_key – output key to use for auc calculation, specifies our
y_pred
.compute_per_class_metrics – boolean flag to compute per-class metrics (default: SETTINGS.compute_per_class_metrics or False).
prefix – metric prefix
suffix – metric suffix
Examples:
import torch from torch.utils.data import DataLoader, TensorDataset from catalyst import dl # sample data num_samples, num_features, num_classes = int(1e4), int(1e1), 4 X = torch.rand(num_samples, num_features) y = (torch.rand(num_samples,) * num_classes).to(torch.int64) # pytorch loaders dataset = TensorDataset(X, y) loader = DataLoader(dataset, batch_size=32, num_workers=1) loaders = {"train": loader, "valid": loader} # model, criterion, optimizer, scheduler model = torch.nn.Linear(num_features, num_classes) criterion = torch.nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters()) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [2]) # model training runner = dl.SupervisedRunner( input_key="features", output_key="logits", target_key="targets", loss_key="loss" ) runner.train( model=model, criterion=criterion, optimizer=optimizer, scheduler=scheduler, loaders=loaders, logdir="./logdir", num_epochs=3, valid_loader="valid", valid_metric="accuracy03", minimize_valid_metric=False, verbose=True, callbacks=[ dl.AccuracyCallback( input_key="logits", target_key="targets", num_classes=num_classes ), dl.PrecisionRecallF1SupportCallback( input_key="logits", target_key="targets", num_classes=num_classes ), dl.AUCCallback(input_key="logits", target_key="targets"), ], )
Note
Please follow the minimal examples sections for more use cases.
CMCScoreCallback¶
- class catalyst.callbacks.metrics.cmc_score.CMCScoreCallback(embeddings_key: str, labels_key: str, is_query_key: str, topk: Optional[Iterable[int]] = None, prefix: Optional[str] = None, suffix: Optional[str] = None)[source]¶
Bases:
catalyst.callbacks.metric.LoaderMetricCallback
Cumulative Matching Characteristics callback.
This callback was designed to count cumulative matching characteristics. If current object is from query your dataset should output True in is_query_key and false if current object is from gallery. You can see QueryGalleryDataset in catalyst.contrib.datasets.metric_learning for more information. On batch end callback accumulate all embeddings
- Parameters
embeddings_key – embeddings key in output dict
labels_key – labels key in output dict
is_query_key – bool key True if current object is from query
topk – specifies which cmc@K to log
prefix – metric prefix
suffix – metric suffix
Note
You should use it with ControlFlowCallback and add all query/gallery sets to loaders. Loaders should contain “is_query” and “label” key.
Examples:
import os from torch.optim import Adam from torch.utils.data import DataLoader from catalyst import data, dl from catalyst.contrib import data, datasets, models, nn # 1. train and valid loaders transforms = data.Compose([ data.ImageToTensor(), data.NormalizeImage((0.1307,), (0.3081,)) ]) train_dataset = datasets.MnistMLDataset( root=os.getcwd(), download=True, transform=transforms ) sampler = data.BatchBalanceClassSampler( labels=train_dataset.get_labels(), num_classes=5, num_samples=10 ) train_loader = DataLoader(dataset=train_dataset, batch_sampler=sampler) valid_dataset = datasets.MnistQGDataset( root=os.getcwd(), transform=transforms, gallery_fraq=0.2 ) valid_loader = DataLoader(dataset=valid_dataset, batch_size=1024) # 2. model and optimizer model = models.MnistSimpleNet(out_features=16) optimizer = Adam(model.parameters(), lr=0.001) # 3. criterion with triplets sampling sampler_inbatch = data.HardTripletsSampler(norm_required=False) criterion = nn.TripletMarginLossWithSampler( margin=0.5, sampler_inbatch=sampler_inbatch ) # 4. training with catalyst Runner class CustomRunner(dl.SupervisedRunner): def handle_batch(self, batch) -> None: if self.is_train_loader: images, targets = batch["features"].float(), batch["targets"].long() features = self.model(images) self.batch = {"embeddings": features, "targets": targets} else: images, targets, is_query = ( batch["features"].float(), batch["targets"].long(), batch["is_query"].bool() ) features = self.model(images) self.batch = { "embeddings": features, "targets": targets, "is_query": is_query } callbacks = [ dl.ControlFlowCallback( dl.CriterionCallback( input_key="embeddings", target_key="targets", metric_key="loss" ), loaders="train", ), dl.ControlFlowCallback( dl.CMCScoreCallback( embeddings_key="embeddings", labels_key="targets", is_query_key="is_query", topk=[1], ), loaders="valid", ), dl.PeriodicLoaderCallback( valid_loader_key="valid", valid_metric_key="cmc01", minimize=False, valid=2 ), ] runner = CustomRunner(input_key="features", output_key="embeddings") runner.train( model=model, criterion=criterion, optimizer=optimizer, callbacks=callbacks, loaders={"train": train_loader, "valid": valid_loader}, verbose=False, logdir="./logs", valid_loader="valid", valid_metric="cmc01", minimize_valid_metric=False, num_epochs=10, )
Note
Metric names depending on input parameters:
topk = (1,) or None
—>"cmc01"
topk = (1, 3)
—>"cmc01"
,"cmc03"
topk = (1, 3, 5)
—>"cmc01"
,"cmc03"
,"cmc05"
You can find them in
runner.batch_metrics
,runner.loader_metrics
orrunner.epoch_metrics
.Note
Please follow the minimal examples sections for more use cases.
ConfusionMatrixCallback¶
- class catalyst.callbacks.metrics.confusion_matrix.ConfusionMatrixCallback(input_key: str, target_key: str, prefix: Optional[str] = None, class_names: Optional[List[str]] = None, num_classes: Optional[int] = None, normalize: bool = False, plot_params: Optional[Dict] = None)[source]¶
Bases:
catalyst.core.callback.Callback
Callback to plot your confusion matrix to the loggers.
- Parameters
input_key – key to use from
runner.batch
, specifies oury_pred
target_key – key to use from
runner.batch
, specifies oury_true
prefix – plot name for monitoring tools
class_names – list with class names
num_classes – number of classes
normalize – boolean flag for confusion matrix normalization
plot_params – extra params for plt.figure rendering
Note
catalyst[ml] required for this callback
Examples:
import torch from torch.utils.data import DataLoader, TensorDataset from catalyst import dl # sample data num_samples, num_features, num_classes = int(1e4), int(1e1), 4 X = torch.rand(num_samples, num_features) y = (torch.rand(num_samples,) * num_classes).to(torch.int64) # pytorch loaders dataset = TensorDataset(X, y) loader = DataLoader(dataset, batch_size=32, num_workers=1) loaders = {"train": loader, "valid": loader} # model, criterion, optimizer, scheduler model = torch.nn.Linear(num_features, num_classes) criterion = torch.nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters()) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [2]) # model training runner = dl.SupervisedRunner( input_key="features", output_key="logits", target_key="targets", loss_key="loss" ) runner.train( model=model, criterion=criterion, optimizer=optimizer, scheduler=scheduler, loaders=loaders, logdir="./logdir", num_epochs=3, valid_loader="valid", valid_metric="accuracy03", minimize_valid_metric=False, verbose=True, callbacks=[ dl.AccuracyCallback( input_key="logits", target_key="targets", num_classes=num_classes ), dl.PrecisionRecallF1SupportCallback( input_key="logits", target_key="targets", num_classes=num_classes ), dl.AUCCallback(input_key="logits", target_key="targets"), dl.ConfusionMatrixCallback( input_key="logits", target_key="targets", num_classes=num_classes ), ], )
Note
Please follow the minimal examples sections for more use cases.
DiceCallback¶
- class catalyst.callbacks.metrics.segmentation.DiceCallback(input_key: str, target_key: str, class_dim: int = 1, weights: Optional[List[float]] = None, class_names: Optional[List[str]] = None, threshold: Optional[float] = None, log_on_batch: bool = True, compute_per_class_metrics: bool = False, prefix: Optional[str] = None, suffix: Optional[str] = None)[source]¶
Bases:
catalyst.callbacks.metric.BatchMetricCallback
Dice metric callback.
- Parameters
input_key – input key to use for metric calculation, specifies our y_pred
target_key – output key to use for metric calculation, specifies our y_true
class_dim – indicates class dimension (K) for
outputs
andtargets
tensors (default = 1)weights – class weights
class_names – class names
threshold – threshold for outputs binarization
log_on_batch – boolean flag to log computed metrics every batch
compute_per_class_metrics – boolean flag to compute per-class metrics (default: SETTINGS.compute_per_class_metrics or False).
prefix – metric prefix
suffix – metric suffix
Examples:
import os import torch from torch import nn from torch.utils.data import DataLoader from catalyst import dl from catalyst.data import ToTensor from catalyst.contrib import MNIST, IoULoss model = nn.Sequential( nn.Conv2d(1, 1, 3, 1, 1), nn.ReLU(), nn.Conv2d(1, 1, 3, 1, 1), nn.Sigmoid(), ) criterion = IoULoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.02) loaders = { "train": DataLoader( MNIST(os.getcwd(), train=True, download=True, transform=ToTensor()), batch_size=32 ), "valid": DataLoader( MNIST(os.getcwd(), train=False), batch_size=32 ), } class CustomRunner(dl.SupervisedRunner): def handle_batch(self, batch): x = batch[self._input_key] x_noise = (x + torch.rand_like(x)).clamp_(0, 1) x_ = self.model(x_noise) self.batch = { self._input_key: x, self._output_key: x_, self._target_key: x } runner = CustomRunner( input_key="features", output_key="scores", target_key="targets", loss_key="loss" ) # model training runner.train( model=model, criterion=criterion, optimizer=optimizer, loaders=loaders, num_epochs=1, callbacks=[ dl.IOUCallback(input_key="scores", target_key="targets"), dl.DiceCallback(input_key="scores", target_key="targets"), dl.TrevskyCallback(input_key="scores", target_key="targets", alpha=0.2), ], logdir="./logdir", valid_loader="valid", valid_metric="loss", minimize_valid_metric=True, verbose=True, )
Note
Please follow the minimal examples sections for more use cases.
- __init__(input_key: str, target_key: str, class_dim: int = 1, weights: Optional[List[float]] = None, class_names: Optional[List[str]] = None, threshold: Optional[float] = None, log_on_batch: bool = True, compute_per_class_metrics: bool = False, prefix: Optional[str] = None, suffix: Optional[str] = None)[source]¶
Init.
FunctionalMetricCallback¶
- class catalyst.callbacks.metrics.functional_metric.FunctionalMetricCallback(input_key: Union[str, Iterable[str], Dict[str, str]], target_key: Union[str, Iterable[str], Dict[str, str]], metric_fn: Callable, metric_key: str, compute_on_call: bool = True, log_on_batch: bool = True, prefix: Optional[str] = None, suffix: Optional[str] = None)[source]¶
Bases:
catalyst.callbacks.metric.FunctionalBatchMetricCallback
- Parameters
input_key – input key to use for metric calculation, specifies our y_pred
target_key – output key to use for metric calculation, specifies our y_true
metric_fn – metric function, that get outputs, targets and return score as torch.Tensor
metric_key – key to store computed metric in
runner.batch_metrics
dictionarycompute_on_call – Computes and returns metric value during metric call. Used for per-batch logging. default: True
log_on_batch – boolean flag to log computed metrics every batch
prefix – metric prefix
suffix – metric suffix
HitrateCallback¶
- class catalyst.callbacks.metrics.recsys.HitrateCallback(input_key: str, target_key: str, topk: Optional[Iterable[int]] = None, log_on_batch: bool = True, prefix: Optional[str] = None, suffix: Optional[str] = None)[source]¶
Bases:
catalyst.callbacks.metric.BatchMetricCallback
Hitrate metric callback. Computes HR@topk for the specified values of topk.
- Parameters
input_key – input key to use for metric calculation, specifies our y_pred
target_key – output key to use for metric calculation, specifies our y_true
topk – specifies which HR@K to log
log_on_batch – boolean flag to log computed metrics every batch
prefix – metric prefix
suffix – metric suffix
Examples:
import torch from torch.utils.data import DataLoader, TensorDataset from catalyst import dl # sample data num_users, num_features, num_items = int(1e4), int(1e1), 10 X = torch.rand(num_users, num_features) y = (torch.rand(num_users, num_items) > 0.5).to(torch.float32) # pytorch loaders dataset = TensorDataset(X, y) loader = DataLoader(dataset, batch_size=32, num_workers=1) loaders = {"train": loader, "valid": loader} # model, criterion, optimizer, scheduler model = torch.nn.Linear(num_features, num_items) criterion = torch.nn.BCEWithLogitsLoss() optimizer = torch.optim.Adam(model.parameters()) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [2]) # model training runner = dl.SupervisedRunner( input_key="features", output_key="logits", target_key="targets", loss_key="loss" ) runner.train( model=model, criterion=criterion, optimizer=optimizer, scheduler=scheduler, loaders=loaders, num_epochs=3, verbose=True, callbacks=[ dl.BatchTransformCallback( transform=torch.sigmoid, scope="on_batch_end", input_key="logits", output_key="scores" ), dl.CriterionCallback( input_key="logits", target_key="targets", metric_key="loss" ), dl.AUCCallback(input_key="scores", target_key="targets"), dl.HitrateCallback( input_key="scores", target_key="targets", topk=(1, 3, 5) ), dl.MRRCallback(input_key="scores", target_key="targets", topk=(1, 3, 5)), dl.MAPCallback(input_key="scores", target_key="targets", topk=(1, 3, 5)), dl.NDCGCallback(input_key="scores", target_key="targets", topk=(1, 3)), dl.OptimizerCallback(metric_key="loss"), dl.SchedulerCallback(), dl.CheckpointCallback( logdir="./logs", loader_key="valid", metric_key="loss", minimize=True ), ] )
Note
Metric names depending on input parameters:
topk = (1,) or None
—>"hitrate01"
topk = (1, 3)
—>"hitrate01"
,"hitrate03"
topk = (1, 3, 5)
—>"hitrate01"
,"hitrate03"
,"hitrate05"
You can find them in
runner.batch_metrics
,runner.loader_metrics
orrunner.epoch_metrics
.Note
Please follow the minimal examples sections for more use cases.
IOUCallback¶
- class catalyst.callbacks.metrics.segmentation.IOUCallback(input_key: str, target_key: str, class_dim: int = 1, weights: Optional[List[float]] = None, class_names: Optional[List[str]] = None, threshold: Optional[float] = None, log_on_batch: bool = True, compute_per_class_metrics: bool = False, prefix: Optional[str] = None, suffix: Optional[str] = None)[source]¶
Bases:
catalyst.callbacks.metric.BatchMetricCallback
IOU metric callback.
- Parameters
input_key – input key to use for metric calculation, specifies our y_pred
target_key – output key to use for metric calculation, specifies our y_true
class_dim – indicates class dimension (K) for
outputs
andtargets
tensors (default = 1)weights – class weights
class_names – class names
threshold – threshold for outputs binarization
log_on_batch – boolean flag to log computed metrics every batch
compute_per_class_metrics – boolean flag to compute per-class metrics (default: SETTINGS.compute_per_class_metrics or False).
prefix – metric prefix
suffix – metric suffix
Examples:
import os import torch from torch import nn from torch.utils.data import DataLoader from catalyst import dl from catalyst.data import ToTensor from catalyst.contrib import MNIST, IoULoss model = nn.Sequential( nn.Conv2d(1, 1, 3, 1, 1), nn.ReLU(), nn.Conv2d(1, 1, 3, 1, 1), nn.Sigmoid(), ) criterion = IoULoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.02) loaders = { "train": DataLoader( MNIST(os.getcwd(), train=True, download=True, transform=ToTensor()), batch_size=32 ), "valid": DataLoader( MNIST(os.getcwd(), train=False), batch_size=32 ), } class CustomRunner(dl.SupervisedRunner): def handle_batch(self, batch): x = batch[self._input_key] x_noise = (x + torch.rand_like(x)).clamp_(0, 1) x_ = self.model(x_noise) self.batch = { self._input_key: x, self._output_key: x_, self._target_key: x } runner = CustomRunner( input_key="features", output_key="scores", target_key="targets", loss_key="loss" ) # model training runner.train( model=model, criterion=criterion, optimizer=optimizer, loaders=loaders, num_epochs=1, callbacks=[ dl.IOUCallback(input_key="scores", target_key="targets"), dl.DiceCallback(input_key="scores", target_key="targets"), dl.TrevskyCallback(input_key="scores", target_key="targets", alpha=0.2), ], logdir="./logdir", valid_loader="valid", valid_metric="loss", minimize_valid_metric=True, verbose=True, )
Note
Please follow the minimal examples sections for more use cases.
- __init__(input_key: str, target_key: str, class_dim: int = 1, weights: Optional[List[float]] = None, class_names: Optional[List[str]] = None, threshold: Optional[float] = None, log_on_batch: bool = True, compute_per_class_metrics: bool = False, prefix: Optional[str] = None, suffix: Optional[str] = None)[source]¶
Init.
MAPCallback¶
- class catalyst.callbacks.metrics.recsys.MAPCallback(input_key: str, target_key: str, topk: Optional[Iterable[int]] = None, log_on_batch: bool = True, prefix: Optional[str] = None, suffix: Optional[str] = None)[source]¶
Bases:
catalyst.callbacks.metric.BatchMetricCallback
MAP metric callback. Computes MAP@topk for the specified values of topk.
- Parameters
input_key – input key to use for metric calculation, specifies our y_pred
target_key – output key to use for metric calculation, specifies our y_true
prefix – key for the metric’s name
topk – specifies which MAP@K to log
log_on_batch – boolean flag to log computed metrics every batch
prefix – metric prefix
suffix – metric suffix
Examples:
import torch from torch.utils.data import DataLoader, TensorDataset from catalyst import dl # sample data num_users, num_features, num_items = int(1e4), int(1e1), 10 X = torch.rand(num_users, num_features) y = (torch.rand(num_users, num_items) > 0.5).to(torch.float32) # pytorch loaders dataset = TensorDataset(X, y) loader = DataLoader(dataset, batch_size=32, num_workers=1) loaders = {"train": loader, "valid": loader} # model, criterion, optimizer, scheduler model = torch.nn.Linear(num_features, num_items) criterion = torch.nn.BCEWithLogitsLoss() optimizer = torch.optim.Adam(model.parameters()) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [2]) # model training runner = dl.SupervisedRunner( input_key="features", output_key="logits", target_key="targets", loss_key="loss" ) runner.train( model=model, criterion=criterion, optimizer=optimizer, scheduler=scheduler, loaders=loaders, num_epochs=3, verbose=True, callbacks=[ dl.BatchTransformCallback( transform=torch.sigmoid, scope="on_batch_end", input_key="logits", output_key="scores" ), dl.CriterionCallback( input_key="logits", target_key="targets", metric_key="loss" ), dl.AUCCallback(input_key="scores", target_key="targets"), dl.HitrateCallback( input_key="scores", target_key="targets", topk=(1, 3, 5) ), dl.MRRCallback(input_key="scores", target_key="targets", topk=(1, 3, 5)), dl.MAPCallback(input_key="scores", target_key="targets", topk=(1, 3, 5)), dl.NDCGCallback(input_key="scores", target_key="targets", topk=(1, 3)), dl.OptimizerCallback(metric_key="loss"), dl.SchedulerCallback(), dl.CheckpointCallback( logdir="./logs", loader_key="valid", metric_key="loss", minimize=True ), ] )
Note
Metric names depending on input parameters:
topk = (1,) or None
—>"map01"
topk = (1, 3)
—>"map01"
,"map03"
topk = (1, 3, 5)
—>"map01"
,"map03"
,"map05"
You can find them in
runner.batch_metrics
,runner.loader_metrics
orrunner.epoch_metrics
.Note
Please follow the minimal examples sections for more use cases.
MultilabelAccuracyCallback¶
- class catalyst.callbacks.metrics.accuracy.MultilabelAccuracyCallback(input_key: str, target_key: str, threshold: Union[float, torch.Tensor] = 0.5, log_on_batch: bool = True, prefix: Optional[str] = None, suffix: Optional[str] = None)[source]¶
Bases:
catalyst.callbacks.metric.BatchMetricCallback
Multilabel accuracy metric callback. Computes multilabel accuracy@topk for the specified values of topk.
- Parameters
input_key – input key to use for metric calculation, specifies our y_pred
target_key – output key to use for metric calculation, specifies our y_true
threshold – thresholds for model scores
log_on_batch – boolean flag to log computed metrics every batch
prefix – metric prefix
suffix – metric suffix
Examples:
import torch from torch.utils.data import DataLoader, TensorDataset from catalyst import dl # sample data num_samples, num_features, num_classes = int(1e4), int(1e1), 4 X = torch.rand(num_samples, num_features) y = (torch.rand(num_samples, num_classes) > 0.5).to(torch.float32) # pytorch loaders dataset = TensorDataset(X, y) loader = DataLoader(dataset, batch_size=32, num_workers=1) loaders = {"train": loader, "valid": loader} # model, criterion, optimizer, scheduler model = torch.nn.Linear(num_features, num_classes) criterion = torch.nn.BCEWithLogitsLoss() optimizer = torch.optim.Adam(model.parameters()) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [2]) # model training runner = dl.SupervisedRunner( input_key="features", output_key="logits", target_key="targets", loss_key="loss" ) runner.train( model=model, criterion=criterion, optimizer=optimizer, scheduler=scheduler, loaders=loaders, logdir="./logdir", num_epochs=3, valid_loader="valid", valid_metric="accuracy", minimize_valid_metric=False, verbose=True, callbacks=[ dl.AUCCallback(input_key="logits", target_key="targets"), dl.MultilabelAccuracyCallback( input_key="logits", target_key="targets", threshold=0.5 ) ]
Note
Please follow the minimal examples sections for more use cases.
MultilabelPrecisionRecallF1SupportCallback¶
- class catalyst.callbacks.metrics.classification.MultilabelPrecisionRecallF1SupportCallback(input_key: str, target_key: str, num_classes: Optional[int] = None, zero_division: int = 0, log_on_batch: bool = True, compute_per_class_metrics: bool = False, prefix: Optional[str] = None, suffix: Optional[str] = None)[source]¶
Bases:
catalyst.callbacks.metric.BatchMetricCallback
Multilabel PrecisionRecallF1Support metric callback.
- Parameters
input_key – input key to use for metric calculation, specifies our y_pred
target_key – output key to use for metric calculation, specifies our y_true
num_classes – number of classes
zero_division – value to set in case of zero division during metrics (precision, recall) computation; should be one of 0 or 1
log_on_batch – boolean flag to log computed metrics every batch
compute_per_class_metrics – boolean flag to compute per-class metrics (default: SETTINGS.compute_per_class_metrics or False).
prefix – metric prefix
suffix – metric suffix
Examples:
import torch from torch.utils.data import DataLoader, TensorDataset from catalyst import dl # sample data num_samples, num_features, num_classes = int(1e4), int(1e1), 4 X = torch.rand(num_samples, num_features) y = (torch.rand(num_samples, num_classes) > 0.5).to(torch.float32) # pytorch loaders dataset = TensorDataset(X, y) loader = DataLoader(dataset, batch_size=32, num_workers=1) loaders = {"train": loader, "valid": loader} # model, criterion, optimizer, scheduler model = torch.nn.Linear(num_features, num_classes) criterion = torch.nn.BCEWithLogitsLoss() optimizer = torch.optim.Adam(model.parameters()) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [2]) # model training runner = dl.SupervisedRunner( input_key="features", output_key="logits", target_key="targets", loss_key="loss" ) runner.train( model=model, criterion=criterion, optimizer=optimizer, scheduler=scheduler, loaders=loaders, logdir="./logdir", num_epochs=3, valid_loader="valid", valid_metric="accuracy", minimize_valid_metric=False, verbose=True, callbacks=[ dl.BatchTransformCallback( transform=torch.sigmoid, scope="on_batch_end", input_key="logits", output_key="scores" ), dl.AUCCallback(input_key="scores", target_key="targets"), dl.MultilabelAccuracyCallback( input_key="scores", target_key="targets", threshold=0.5 ), dl.MultilabelPrecisionRecallF1SupportCallback( input_key="scores", target_key="targets", num_classes=num_classes ), ] )
Note
Please follow the minimal examples sections for more use cases.
MRRCallback¶
- class catalyst.callbacks.metrics.recsys.MRRCallback(input_key: str, target_key: str, topk: Optional[Iterable[int]] = None, log_on_batch: bool = True, prefix: Optional[str] = None, suffix: Optional[str] = None)[source]¶
Bases:
catalyst.callbacks.metric.BatchMetricCallback
MRR metric callback. Computes MRR@topk for the specified values of topk.
- Parameters
input_key – input key to use for metric calculation, specifies our y_pred
target_key – output key to use for metric calculation, specifies our y_true
prefix – key for the metric’s name
topk – specifies which MRR@K to log
log_on_batch – boolean flag to log computed metrics every batch
prefix – metric prefix
suffix – metric suffix
Examples:
import torch from torch.utils.data import DataLoader, TensorDataset from catalyst import dl # sample data num_users, num_features, num_items = int(1e4), int(1e1), 10 X = torch.rand(num_users, num_features) y = (torch.rand(num_users, num_items) > 0.5).to(torch.float32) # pytorch loaders dataset = TensorDataset(X, y) loader = DataLoader(dataset, batch_size=32, num_workers=1) loaders = {"train": loader, "valid": loader} # model, criterion, optimizer, scheduler model = torch.nn.Linear(num_features, num_items) criterion = torch.nn.BCEWithLogitsLoss() optimizer = torch.optim.Adam(model.parameters()) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [2]) # model training runner = dl.SupervisedRunner( input_key="features", output_key="logits", target_key="targets", loss_key="loss" ) runner.train( model=model, criterion=criterion, optimizer=optimizer, scheduler=scheduler, loaders=loaders, num_epochs=3, verbose=True, callbacks=[ dl.BatchTransformCallback( transform=torch.sigmoid, scope="on_batch_end", input_key="logits", output_key="scores" ), dl.CriterionCallback( input_key="logits", target_key="targets", metric_key="loss" ), dl.AUCCallback(input_key="scores", target_key="targets"), dl.HitrateCallback( input_key="scores", target_key="targets", topk=(1, 3, 5) ), dl.MRRCallback(input_key="scores", target_key="targets", topk=(1, 3, 5)), dl.MAPCallback(input_key="scores", target_key="targets", topk=(1, 3, 5)), dl.NDCGCallback(input_key="scores", target_key="targets", topk=(1, 3)), dl.OptimizerCallback(metric_key="loss"), dl.SchedulerCallback(), dl.CheckpointCallback( logdir="./logs", loader_key="valid", metric_key="loss", minimize=True ), ] )
Note
Metric names depending on input parameters:
topk = (1,) or None
—>"mrr01"
topk = (1, 3)
—>"mrr01"
,"mrr03"
topk = (1, 3, 5)
—>"mrr01"
,"mrr03"
,"mrr05"
You can find them in
runner.batch_metrics
,runner.loader_metrics
orrunner.epoch_metrics
.Note
Please follow the minimal examples sections for more use cases.
NDCGCallback¶
- class catalyst.callbacks.metrics.recsys.NDCGCallback(input_key: str, target_key: str, topk: Optional[Iterable[int]] = None, log_on_batch: bool = True, prefix: Optional[str] = None, suffix: Optional[str] = None)[source]¶
Bases:
catalyst.callbacks.metric.BatchMetricCallback
NDCG metric callback. Computes NDCG@topk for the specified values of topk.
- Parameters
input_key – input key to use for metric calculation, specifies our y_pred
target_key – output key to use for metric calculation, specifies our y_true
prefix – key for the metric’s name
topk – specifies which NDCG@K to log
log_on_batch – boolean flag to log computed metrics every batch
prefix – metric prefix
suffix – metric suffix
Examples:
import torch from torch.utils.data import DataLoader, TensorDataset from catalyst import dl # sample data num_users, num_features, num_items = int(1e4), int(1e1), 10 X = torch.rand(num_users, num_features) y = (torch.rand(num_users, num_items) > 0.5).to(torch.float32) # pytorch loaders dataset = TensorDataset(X, y) loader = DataLoader(dataset, batch_size=32, num_workers=1) loaders = {"train": loader, "valid": loader} # model, criterion, optimizer, scheduler model = torch.nn.Linear(num_features, num_items) criterion = torch.nn.BCEWithLogitsLoss() optimizer = torch.optim.Adam(model.parameters()) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [2]) # model training runner = dl.SupervisedRunner( input_key="features", output_key="logits", target_key="targets", loss_key="loss" ) runner.train( model=model, criterion=criterion, optimizer=optimizer, scheduler=scheduler, loaders=loaders, num_epochs=3, verbose=True, callbacks=[ dl.BatchTransformCallback( transform=torch.sigmoid, scope="on_batch_end", input_key="logits", output_key="scores" ), dl.CriterionCallback( input_key="logits", target_key="targets", metric_key="loss" ), dl.AUCCallback(input_key="scores", target_key="targets"), dl.HitrateCallback( input_key="scores", target_key="targets", topk=(1, 3, 5) ), dl.MRRCallback(input_key="scores", target_key="targets", topk=(1, 3, 5)), dl.MAPCallback(input_key="scores", target_key="targets", topk=(1, 3, 5)), dl.NDCGCallback(input_key="scores", target_key="targets", topk=(1, 3)), dl.OptimizerCallback(metric_key="loss"), dl.SchedulerCallback(), dl.CheckpointCallback( logdir="./logs", loader_key="valid", metric_key="loss", minimize=True ), ] )
Note
Metric names depending on input parameters:
topk = (1,) or None
—>"ndcg01"
topk = (1, 3)
—>"ndcg01"
,"ndcg03"
topk = (1, 3, 5)
—>"ndcg01"
,"ndcg03"
,"ndcg05"
You can find them in
runner.batch_metrics
,runner.loader_metrics
orrunner.epoch_metrics
.Note
Please follow the minimal examples sections for more use cases.
PrecisionRecallF1SupportCallback¶
- class catalyst.callbacks.metrics.classification.PrecisionRecallF1SupportCallback(input_key: str, target_key: str, num_classes: Optional[int] = None, zero_division: int = 0, log_on_batch: bool = True, compute_per_class_metrics: bool = False, prefix: Optional[str] = None, suffix: Optional[str] = None)[source]¶
Bases:
catalyst.callbacks.metric.BatchMetricCallback
Multiclass PrecisionRecallF1Support metric callback.
- Parameters
input_key – input key to use for metric calculation, specifies our y_pred
target_key – output key to use for metric calculation, specifies our y_true
num_classes – number of classes
zero_division – value to set in case of zero division during metrics (precision, recall) computation; should be one of 0 or 1
log_on_batch – boolean flag to log computed metrics every batch
compute_per_class_metrics – boolean flag to compute per-class metrics (default: SETTINGS.compute_per_class_metrics or False).
prefix – metric prefix
suffix – metric suffix
Examples:
import torch from torch.utils.data import DataLoader, TensorDataset from catalyst import dl # sample data num_samples, num_features, num_classes = int(1e4), int(1e1), 4 X = torch.rand(num_samples, num_features) y = (torch.rand(num_samples,) * num_classes).to(torch.int64) # pytorch loaders dataset = TensorDataset(X, y) loader = DataLoader(dataset, batch_size=32, num_workers=1) loaders = {"train": loader, "valid": loader} # model, criterion, optimizer, scheduler model = torch.nn.Linear(num_features, num_classes) criterion = torch.nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters()) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [2]) # model training runner = dl.SupervisedRunner( input_key="features", output_key="logits", target_key="targets", loss_key="loss" ) runner.train( model=model, criterion=criterion, optimizer=optimizer, scheduler=scheduler, loaders=loaders, logdir="./logdir", num_epochs=3, valid_loader="valid", valid_metric="accuracy03", minimize_valid_metric=False, verbose=True, callbacks=[ dl.AccuracyCallback( input_key="logits", target_key="targets", num_classes=num_classes ), dl.PrecisionRecallF1SupportCallback( input_key="logits", target_key="targets", num_classes=num_classes ), dl.AUCCallback(input_key="logits", target_key="targets"), ], )
Note
Please follow the minimal examples sections for more use cases.
R2SquaredCallback¶
- class catalyst.callbacks.metrics.r2_squared.R2SquaredCallback(input_key: str, target_key: str, prefix: Optional[str] = None, suffix: Optional[str] = None)[source]¶
Bases:
catalyst.callbacks.metric.LoaderMetricCallback
R2 Squared metric callback.
- Parameters
input_key – input key to use for r2squared calculation, specifies our
y_true
target_key – output key to use for r2squared calculation, specifies our
y_pred
prefix – metric prefix
suffix – metric suffix
Examples:
import torch from torch.utils.data import DataLoader, TensorDataset from catalyst import dl # data num_samples, num_features = int(1e4), int(1e1) X, y = torch.rand(num_samples, num_features), torch.rand(num_samples) dataset = TensorDataset(X, y) loader = DataLoader(dataset, batch_size=32, num_workers=1) loaders = {"train": loader, "valid": loader} # model, criterion, optimizer, scheduler model = torch.nn.Linear(num_features, 1) criterion = torch.nn.MSELoss() optimizer = torch.optim.Adam(model.parameters()) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [3, 6]) # model training runner = dl.SupervisedRunner() runner.train( model=model, criterion=criterion, optimizer=optimizer, scheduler=scheduler, loaders=loaders, logdir="./logdir", valid_loader="valid", valid_metric="loss", minimize_valid_metric=True, num_epochs=8, verbose=True, callbacks=[ dl.R2SquaredCallback(input_key="logits", target_key="targets") ] )
Note
Please follow the minimal examples sections for more use cases.
ReidCMCScoreCallback¶
- class catalyst.callbacks.metrics.cmc_score.ReidCMCScoreCallback(embeddings_key: str, pids_key: str, cids_key: str, is_query_key: str, topk: Optional[Iterable[int]] = None, prefix: Optional[str] = None, suffix: Optional[str] = None)[source]¶
Bases:
catalyst.callbacks.metric.LoaderMetricCallback
Cumulative Matching Characteristics callback for reID case. More information about cmc-based callbacks in CMCScoreCallback’s docs.
- Parameters
embeddings_key – embeddings key in output dict
pids_key – pids key in output dict
cids_key – cids key in output dict
is_query_key – bool key True if current object is from query
topk – specifies which cmc@K to log. [1] - cmc@1 [1, 3] - cmc@1 and cmc@3 [1, 3, 5] - cmc@1, cmc@3 and cmc@5
prefix – metric prefix
suffix – metric suffix
SklearnBatchCallback¶
- class catalyst.callbacks.metrics.scikit_learn.SklearnBatchCallback(keys: Mapping[str, Any], metric_fn: Union[Callable, str], metric_key: str, log_on_batch: bool = True, **metric_kwargs)[source]¶
Bases:
catalyst.callbacks.metric.FunctionalBatchMetricCallback
SklearnBatchCallback implements an integration of batch-based Sklearn metrics
- Parameters
keys – a dictionary containing: a mapping between
metric_fn
arguments and keys inrunner.batch
other arguments needed formetric_fn
metric_fn – metric function that gets outputs, targets, and other arguments given in
keys
and returns scoremetric_key – key to store computed metric in
runner.batch_metrics
dictionarylog_on_batch – boolean flag to log computed metrics every batch
metric_kwargs – additional parameters for
metric_fn
Note
catalyst[ml] required for this callback
Examples:
import sklearn import torch from torch.utils.data import DataLoader, TensorDataset from catalyst import dl from functools import partial # sample data num_samples, num_features, num_classes = int(1e4), int(1e1), 4 X = torch.rand(num_samples, num_features) y = (torch.rand(num_samples, num_classes) > 0.5).to(torch.float32) # pytorch loaders dataset = TensorDataset(X, y) loader = DataLoader(dataset, batch_size=32, num_workers=1) loaders = {"train": loader, "valid": loader} # model, criterion, optimizer, scheduler model = torch.nn.Linear(num_features, num_classes) criterion = torch.nn.BCEWithLogitsLoss() optimizer = torch.optim.Adam(model.parameters()) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [2]) # model training runner = dl.SupervisedRunner( input_key="features", output_key="logits", target_key="targets", loss_key="loss" ) runner.train( model=model, criterion=criterion, optimizer=optimizer, scheduler=scheduler, loaders=loaders, num_epochs=3, verbose=True, callbacks=[ dl.BatchTransformCallback( input_key="targets", output_key="labels", transform=partial(torch.argmax, dim=1), scope="on_batch_end", ), dl.BatchTransformCallback( input_key="logits", output_key="scores", transform=partial(torch.softmax, dim=1), scope="on_batch_end", ), dl.BatchTransformCallback( input_key="scores", output_key="preds", transform=partial(torch.argmax, dim=1), scope="on_batch_end", ), dl.MultilabelAccuracyCallback( input_key="logits", target_key="targets", threshold=0.5 ), dl.SklearnBatchCallback( keys={"y_pred": "preds", "y_true": "labels"}, metric_fn="f1_score", metric_key="sk_f1", average="macro", zero_division=1, ) ] )
Note
Please follow the minimal examples sections for more use cases.
SklearnLoaderCallback¶
- class catalyst.callbacks.metrics.scikit_learn.SklearnLoaderCallback(keys: Mapping[str, Any], metric_fn: Union[Callable, str], metric_key: str, **metric_kwargs)[source]¶
Bases:
catalyst.callbacks.metric.LoaderMetricCallback
SklearnLoaderCallback implements an integration of loader-based Sklearn metrics
- Parameters
keys – a mapping between
metric_fn
arguments and keys inrunner.batch
metric_fn – metric function that gets outputs, targets, and other arguments given in
keys
and returns scoremetric_key – key to store computed metric in
runner.batch_metrics
dictionarymetric_kwargs – additional parameters for
metric_fn
Note
catalyst[ml] required for this callback
Examples:
import sklearn import torch from torch.utils.data import DataLoader, TensorDataset from catalyst import dl from functools import partial # sample data num_samples, num_features, num_classes = int(1e4), int(1e1), 4 X = torch.rand(num_samples, num_features) y = (torch.rand(num_samples, num_classes) > 0.5).to(torch.float32) # pytorch loaders dataset = TensorDataset(X, y) loader = DataLoader(dataset, batch_size=32, num_workers=1) loaders = {"train": loader, "valid": loader} # model, criterion, optimizer, scheduler model = torch.nn.Linear(num_features, num_classes) criterion = torch.nn.BCEWithLogitsLoss() optimizer = torch.optim.Adam(model.parameters()) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [2]) # model training runner = dl.SupervisedRunner( input_key="features", output_key="logits", target_key="targets", loss_key="loss" ) runner.train( model=model, criterion=criterion, optimizer=optimizer, scheduler=scheduler, loaders=loaders, num_epochs=3, verbose=True, callbacks=[ dl.BatchTransformCallback( input_key="targets", output_key="labels", transform=partial(torch.argmax, dim=1), scope="on_batch_end", ), dl.BatchTransformCallback( input_key="logits", output_key="scores", transform=partial(torch.softmax, dim=1), scope="on_batch_end", ), dl.BatchTransformCallback( input_key="scores", output_key="preds", transform=partial(torch.argmax, dim=1), scope="on_batch_end", ), dl.MultilabelAccuracyCallback( input_key="logits", target_key="targets", threshold=0.5 ), dl.SklearnLoaderCallback( keys={"y_score": "scores", "y_true": "labels"}, metric_fn="roc_auc_score", metric_key="roc_auc_score", average="macro", multi_class="ovo" ) ] )
Note
Please follow the minimal examples sections for more use cases.
SklearnModelCallback¶
- class catalyst.callbacks.sklearn_model.SklearnModelCallback(feature_key: str, target_key: Optional[str], train_loader: str, valid_loaders: Union[str, List[str]], model_fn: Union[Callable, str], predict_method: str = 'predict', predict_key: str = 'sklearn_predict', **model_kwargs)[source]¶
Bases:
catalyst.core.callback.Callback
Callback to train a classifier on the train loader and to give predictions on the valid loader.
- Parameters
feature_key – keys of tensors that should be used as features for the classifier fit
target_key – keys of tensors that should be used as targets for the classifier fit
train_loader – train loader name
valid_loaders – valid loaders where model should be predicted
model_fn – fabric to produce objects with .fit and predict method
predict_method – predict method name for the classifier
predict_key – key to store computed classifier predicts in
runner.batch
model_kwargs – additional parameters for
model_fn
Note
catalyst[ml] required for this callback
TrevskyCallback¶
- class catalyst.callbacks.metrics.segmentation.TrevskyCallback(input_key: str, target_key: str, alpha: float, beta: Optional[float] = None, class_dim: int = 1, weights: Optional[List[float]] = None, class_names: Optional[List[str]] = None, threshold: Optional[float] = None, log_on_batch: bool = True, compute_per_class_metrics: bool = False, prefix: Optional[str] = None, suffix: Optional[str] = None)[source]¶
Bases:
catalyst.callbacks.metric.BatchMetricCallback
Trevsky metric callback.
- Parameters
input_key – input key to use for metric calculation, specifies our y_pred
target_key – output key to use for metric calculation, specifies our y_true
alpha – false negative coefficient, bigger alpha bigger penalty for false negative. if beta is None, alpha must be in (0, 1)
beta – false positive coefficient, bigger alpha bigger penalty for false positive. Must be in (0, 1), if None beta = (1 - alpha)
class_dim – indicates class dimension (K) for
outputs
andtargets
tensors (default = 1)weights – class weights
class_names – class names
threshold – threshold for outputs binarization
log_on_batch – boolean flag to log computed metrics every batch
compute_per_class_metrics – boolean flag to compute per-class metrics (default: SETTINGS.compute_per_class_metrics or False).
prefix – metric prefix
suffix – metric suffix
Examples:
import os import torch from torch import nn from torch.utils.data import DataLoader from catalyst import dl from catalyst.contrib import MNIST, IoULoss model = nn.Sequential( nn.Conv2d(1, 1, 3, 1, 1), nn.ReLU(), nn.Conv2d(1, 1, 3, 1, 1), nn.Sigmoid(), ) criterion = IoULoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.02) loaders = { "train": DataLoader( MNIST(os.getcwd(), train=True), batch_size=32 ), "valid": DataLoader( MNIST(os.getcwd(), train=False), batch_size=32 ), } class CustomRunner(dl.SupervisedRunner): def handle_batch(self, batch): x = batch[self._input_key] x_noise = (x + torch.rand_like(x)).clamp_(0, 1) x_ = self.model(x_noise) self.batch = { self._input_key: x, self._output_key: x_, self._target_key: x } runner = CustomRunner( input_key="features", output_key="scores", target_key="targets", loss_key="loss" ) # model training runner.train( model=model, criterion=criterion, optimizer=optimizer, loaders=loaders, num_epochs=1, callbacks=[ dl.IOUCallback(input_key="scores", target_key="targets"), dl.DiceCallback(input_key="scores", target_key="targets"), dl.TrevskyCallback(input_key="scores", target_key="targets", alpha=0.2), ], logdir="./logdir", valid_loader="valid", valid_metric="loss", minimize_valid_metric=True, verbose=True, )
Note
Please follow the minimal examples sections for more use cases.
- __init__(input_key: str, target_key: str, alpha: float, beta: Optional[float] = None, class_dim: int = 1, weights: Optional[List[float]] = None, class_names: Optional[List[str]] = None, threshold: Optional[float] = None, log_on_batch: bool = True, compute_per_class_metrics: bool = False, prefix: Optional[str] = None, suffix: Optional[str] = None)[source]¶
Init.