Source code for catalyst.contrib.layers.curricularface
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
[docs]class CurricularFace(nn.Module):
"""Implementation of
`CurricularFace: Adaptive Curriculum Learning\
Loss for Deep Face Recognition`_.
.. _CurricularFace\: Adaptive Curriculum Learning\
Loss for Deep Face Recognition:
https://arxiv.org/abs/2004.00288
Official `pytorch implementation`_.
.. _pytorch implementation:
https://github.com/HuangYG123/CurricularFace
Args:
in_features: size of each input sample.
out_features: size of each output sample.
s: norm of input feature.
Default: ``64.0``.
m: margin.
Default: ``0.5``.
Shape:
- Input: :math:`(batch, H_{in})` where
:math:`H_{in} = in\_features`.
- Output: :math:`(batch, H_{out})` where
:math:`H_{out} = out\_features`.
Example:
>>> layer = CurricularFace(5, 10, s=1.31, m=0.5)
>>> loss_fn = nn.CrosEntropyLoss()
>>> embedding = torch.randn(3, 5, requires_grad=True)
>>> target = torch.empty(3, dtype=torch.long).random_(10)
>>> output = layer(embedding, target)
>>> loss = loss_fn(output, target)
>>> self.engine.backward(loss)
""" # noqa: RST215
def __init__( # noqa: D107
self, in_features: int, out_features: int, s: float = 64.0, m: float = 0.5
):
super(CurricularFace, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.m = m
self.s = s
self.cos_m = math.cos(m)
self.sin_m = math.sin(m)
self.threshold = math.cos(math.pi - m)
self.mm = math.sin(math.pi - m) * m
self.weight = nn.Parameter(torch.Tensor(in_features, out_features))
self.register_buffer("t", torch.zeros(1))
nn.init.normal_(self.weight, std=0.01)
def __repr__(self) -> str: # noqa: D105
rep = (
"CurricularFace("
f"in_features={self.in_features},"
f"out_features={self.out_features},"
f"m={self.m},s={self.s}"
")"
)
return rep
[docs] def forward(
self, input: torch.Tensor, label: torch.LongTensor = None
) -> torch.Tensor:
"""
Args:
input: input features,
expected shapes ``BxF`` where ``B``
is batch dimension and ``F`` is an
input feature dimension.
label: target classes,
expected shapes ``B`` where
``B`` is batch dimension.
If `None` then will be returned
projection on centroids.
Default is `None`.
Returns:
tensor (logits) with shapes ``BxC``
where ``C`` is a number of classes.
"""
cos_theta = torch.mm(F.normalize(input), F.normalize(self.weight, dim=0))
cos_theta = cos_theta.clamp(-1, 1) # for numerical stability
if label is None:
return cos_theta
target_logit = cos_theta[torch.arange(0, input.size(0)), label].view(-1, 1)
sin_theta = torch.sqrt(1.0 - torch.pow(target_logit, 2))
cos_theta_m = (
target_logit * self.cos_m - sin_theta * self.sin_m
) # cos(target+margin)
mask = cos_theta > cos_theta_m
final_target_logit = torch.where(
target_logit > self.threshold, cos_theta_m, target_logit - self.mm
)
hard_example = cos_theta[mask]
with torch.no_grad():
self.t = target_logit.mean() * 0.01 + (1 - 0.01) * self.t
cos_theta[mask] = hard_example * (self.t + hard_example)
cos_theta.scatter_(1, label.view(-1, 1).long(), final_target_logit)
output = cos_theta * self.s
return output
__all__ = ["CurricularFace"]