Source code for torch.optim.optimizer

from collections import defaultdict
from torch._six import container_abcs

import torch
from copy import deepcopy
from itertools import chain
import warnings

class _RequiredParameter(object):
    """Singleton class representing a required parameter for an Optimizer."""
    def __repr__(self):
        return "<required parameter>"

required = _RequiredParameter()

[docs]class Optimizer(object): r"""Base class for all optimizers. .. warning:: Parameters need to be specified as collections that have a deterministic ordering that is consistent between runs. Examples of objects that don't satisfy those properties are sets and iterators over values of dictionaries. Arguments: params (iterable): an iterable of :class:`torch.Tensor` s or :class:`dict` s. Specifies what Tensors should be optimized. defaults: (dict): a dict containing default values of optimization options (used when a parameter group doesn't specify them). """ def __init__(self, params, defaults): torch._C._log_api_usage_once("python.optimizer") self.defaults = defaults if isinstance(params, torch.Tensor): raise TypeError("params argument given to the optimizer should be " "an iterable of Tensors or dicts, but got " + torch.typename(params)) self.state = defaultdict(dict) self.param_groups = [] param_groups = list(params) if len(param_groups) == 0: raise ValueError("optimizer got an empty parameter list") if not isinstance(param_groups[0], dict): param_groups = [{'params': param_groups}] for param_group in param_groups: self.add_param_group(param_group) def __getstate__(self): return { 'defaults': self.defaults, 'state': self.state, 'param_groups': self.param_groups, } def __setstate__(self, state): self.__dict__.update(state) def __repr__(self): format_string = self.__class__.__name__ + ' (' for i, group in enumerate(self.param_groups): format_string += '\n' format_string += 'Parameter Group {0}\n'.format(i) for key in sorted(group.keys()): if key != 'params': format_string += ' {0}: {1}\n'.format(key, group[key]) format_string += ')' return format_string
[docs] def state_dict(self): r"""Returns the state of the optimizer as a :class:`dict`. It contains two entries: * state - a dict holding current optimization state. Its content differs between optimizer classes. * param_groups - a dict containing all parameter groups """ # Save order indices instead of Tensors param_mappings = {} start_index = 0 def pack_group(group): nonlocal start_index packed = {k: v for k, v in group.items() if k != 'params'} param_mappings.update({id(p): i for i, p in enumerate(group['params'], start_index) if id(p) not in param_mappings}) packed['params'] = [param_mappings[id(p)] for p in group['params']] start_index += len(packed['params']) return packed param_groups = [pack_group(g) for g in self.param_groups] # Remap state to use order indices as keys packed_state = {(param_mappings[id(k)] if isinstance(k, torch.Tensor) else k): v for k, v in self.state.items()} return { 'state': packed_state, 'param_groups': param_groups, }
[docs] def load_state_dict(self, state_dict): r"""Loads the optimizer state. Arguments: state_dict (dict): optimizer state. Should be an object returned from a call to :meth:`state_dict`. """ # deepcopy, to be consistent with module API state_dict = deepcopy(state_dict) # Validate the state_dict groups = self.param_groups saved_groups = state_dict['param_groups'] if len(groups) != len(saved_groups): raise ValueError("loaded state dict has a different number of " "parameter groups") param_lens = (len(g['params']) for g in groups) saved_lens = (len(g['params']) for g in saved_groups) if any(p_len != s_len for p_len, s_len in zip(param_lens, saved_lens)): raise ValueError("loaded state dict contains a parameter group " "that doesn't match the size of optimizer's group") # Update the state id_map = {old_id: p for old_id, p in zip(chain.from_iterable((g['params'] for g in saved_groups)), chain.from_iterable((g['params'] for g in groups)))} def cast(param, value): r"""Make a deep copy of value, casting all tensors to device of param.""" if isinstance(value, torch.Tensor): # Floating-point types are a bit special here. They are the only ones # that are assumed to always match the type of params. if param.is_floating_point(): value = value = return value elif isinstance(value, dict): return {k: cast(param, v) for k, v in value.items()} elif isinstance(value, container_abcs.Iterable): return type(value)(cast(param, v) for v in value) else: return value # Copy state assigned to params (and cast tensors to appropriate types). # State that is not assigned to params is copied as is (needed for # backward compatibility). state = defaultdict(dict) for k, v in state_dict['state'].items(): if k in id_map: param = id_map[k] state[param] = cast(param, v) else: state[k] = v # Update parameter groups, setting their 'params' value def update_group(group, new_group): new_group['params'] = group['params'] return new_group param_groups = [ update_group(g, ng) for g, ng in zip(groups, saved_groups)] self.__setstate__({'state': state, 'param_groups': param_groups})
[docs] def zero_grad(self, set_to_none: bool = False): r"""Sets the gradients of all optimized :class:`torch.Tensor` s to zero. Arguments: set_to_none (bool): instead of setting to zero, set the grads to None. This is will in general have lower memory footprint, and can modestly improve performance. However, it changes certain behaviors. For example: 1. When the user tries to access a gradient and perform manual ops on it, a None attribute or a Tensor full of 0s will behave differently. 2. If the user requests ``zero_grad(set_to_none=True)`` followed by a backward pass, ``.grad``\ s are guaranteed to be None for params that did not receive a gradient. 3. ``torch.optim`` optimizers have a different behavior if the gradient is 0 or None (in one case it does the step with a gradient of 0 and in the other it skips the step altogether). """ for group in self.param_groups: for p in group['params']: if p.grad is not None: if set_to_none: p.grad = None else: if p.grad.grad_fn is not None: p.grad.detach_() else: p.grad.requires_grad_(False) p.grad.zero_()
[docs] def step(self, closure): r"""Performs a single optimization step (parameter update). Arguments: closure (callable): A closure that reevaluates the model and returns the loss. Optional for most optimizers. .. note:: Unless otherwise specified, this function should not modify the ``.grad`` field of the parameters. """ raise NotImplementedError
[docs] def add_param_group(self, param_group): r"""Add a param group to the :class:`Optimizer` s `param_groups`. This can be useful when fine tuning a pre-trained network as frozen layers can be made trainable and added to the :class:`Optimizer` as training progresses. Arguments: param_group (dict): Specifies what Tensors should be optimized along with group specific optimization options. """ assert isinstance(param_group, dict), "param group must be a dict" params = param_group['params'] if isinstance(params, torch.Tensor): param_group['params'] = [params] elif isinstance(params, set): raise TypeError('optimizer parameters need to be organized in ordered collections, but ' 'the ordering of tensors in sets will change between runs. Please use a list instead.') else: param_group['params'] = list(params) for param in param_group['params']: if not isinstance(param, torch.Tensor): raise TypeError("optimizer can only optimize Tensors, " "but one of the params is " + torch.typename(param)) if not param.is_leaf: raise ValueError("can't optimize a non-leaf Tensor") for name, default in self.defaults.items(): if default is required and name not in param_group: raise ValueError("parameter group didn't specify a value of required optimization parameter " + name) else: param_group.setdefault(name, default) params = param_group['params'] if len(params) != len(set(params)): warnings.warn("optimizer contains a parameter group with duplicate parameters; " "in future, this will cause an error; " "see for more information", stacklevel=3) param_set = set() for group in self.param_groups: param_set.update(set(group['params'])) if not param_set.isdisjoint(set(param_group['params'])): raise ValueError("some parameters appear in more than one parameter group") self.param_groups.append(param_group)