Loggers¶
ConsoleLogger¶
-
class
catalyst.loggers.console.
ConsoleLogger
[source]¶ Bases:
catalyst.core.logger.ILogger
Console logger for parameters and metrics. Used by default during all runs.
CSVLogger¶
-
class
catalyst.loggers.csv.
CSVLogger
(logdir: str, use_logdir_postfix: bool = False)[source]¶ Bases:
catalyst.core.logger.ILogger
@TODO: docs.
TensorboardLogger¶
-
class
catalyst.loggers.tensorboard.
TensorboardLogger
(logdir: str, use_logdir_postfix: bool = False)[source]¶ Bases:
catalyst.core.logger.ILogger
Tensorboard logger for parameters, metrics, images and other artifacts.
- Parameters
logdir – path to logdir for tensorboard
use_logdir_postfix – boolean flag to use extra
tensorboard
prefix in the logdir
MLflowLogger¶
-
class
catalyst.loggers.mlflow.
MLflowLogger
(experiment: str, run: Optional[str] = None, tracking_uri: Optional[str] = None, registry_uri: Optional[str] = None)[source]¶ Bases:
catalyst.core.logger.ILogger
Mlflow logger for parameters, metrics, images and other artifacts.
Mlflow documentation: https://mlflow.org/docs/latest/index.html.
- Parameters
experiment – Name of the experiment in MLflow to log to.
run – Name of the run in Mlflow to log to.
tracking_uri – URI of tracking server against which to log run information related.
registry_uri – Address of local or remote model registry server.
Notebook API example:
from catalyst import dl class CustomSupervisedRunner(dl.IRunner): def get_engine(self) -> dl.IEngine: return dl.DeviceEngine("cpu") def get_loggers(self): return { "console": dl.ConsoleLogger(), "mlflow": dl.MLflowLogger(experiment="test_exp", run="test_run") } runner = CustomSupervisedRunner().run() model = runner.model
Config API example:
loggers: mlflow: _target_: MLflowLogger experiment: test_exp run: test_run ...