Logging¶
Metrics logging¶
Catalyst supports a variety of metrics storages during the experiment
runner.batch_metrics
- dictionary, flatten storage for batch metrics.runner.batch_metrics = {"loss": ..., "accuracy": ..., "iou": ...}
runner.loader_metrics
- dictionary with aggregated batch statistics for loader (mean over all batches) and global loader metrics, like AUC.runner.loader_metrics = {"loss": ..., "accuracy": ..., "auc": ...}
runner.epoch_metrics
- dictionary with summarized metrics for different loaders and global epoch metrics, like lr, momentum.runner.epoch_metrics = { "train_loss": ..., "train_auc": ..., "valid_loss": ..., "lr": ..., "momentum": ..., }
runner.valid_metrics
- dictionary with validation metrics for current epoch.runner.valid_metrics = {"loss": ..., "accuracy": ..., "auc": ...}
runner.best_valid_metrics
- dictionary with best validation metrics during whole training process.runner.best_valid_metrics = {"loss": ..., "accuracy": ..., "auc": ...}
You could log any new metric in a stratforward way:
import os
import torch
from torch.nn import functional as F
from torch.utils.data import DataLoader
from catalyst import dl, metrics
from catalyst.data.cv import ToTensor
from catalyst.contrib.datasets import MNIST
model = torch.nn.Linear(28 * 28, 10)
optimizer = torch.optim.Adam(model.parameters(), lr=0.02)
loaders = {
"train": DataLoader(MNIST(os.getcwd(), train=True, download=True, transform=ToTensor()), batch_size=32),
"valid": DataLoader(MNIST(os.getcwd(), train=False, download=True, transform=ToTensor()), batch_size=32),
}
class CustomRunner(dl.Runner):
def predict_batch(self, batch):
# model inference step
return self.model(batch[0].to(self.device).view(batch[0].size(0), -1))
def handle_batch(self, batch):
# model train/valid step
x, y = batch
y_hat = self.model(x.view(x.size(0), -1))
loss = F.cross_entropy(y_hat, y)
accuracy01, accuracy03 = metrics.accuracy(y_hat, y, topk=(1, 3))
# <--- logging --->
# here we are adding loss, accuracy01 and accuracy03 to the batch metrics
self.batch_metrics.update(
{"loss": loss, "accuracy01": accuracy01, "accuracy03": accuracy03}
)
# <--- logging --->
if self.is_train_loader:
loss.backward()
self.optimizer.step()
self.optimizer.zero_grad()
runner = CustomRunner()
# model training
runner.train(
model=model,
optimizer=optimizer,
loaders=loaders,
logdir="./logs",
num_epochs=5,
verbose=True,
load_best_on_end=True,
)
[WIP] Metrics logging with callback¶
todo
[WIP] Supported loggers¶
console
txt
Tensorboard
Alchemy
Neptune
Weights and Biases
If you haven’t found the answer for your question, feel free to join our slack for the discussion.