Metrics¶
Metric API¶
IMetric¶
-
class
catalyst.metrics._metric.
IMetric
(compute_on_call: bool = True)[source]¶ Bases:
abc.ABC
Interface for all Metrics.
- Parameters
compute_on_call – Computes and returns metric value during metric call. Used for per-batch logging. default: True
-
abstract
compute
() → Any[source]¶ Computes the metric based on it’s accumulated state.
By default, this is called at the end of each loader (on_loader_end event).
- Returns
computed value, # noqa: DAR202 it’s better to return key-value
- Return type
Any
ICallbackBatchMetric¶
-
class
catalyst.metrics._metric.
ICallbackBatchMetric
(compute_on_call: bool = True, prefix: str = None, suffix: str = None)[source]¶ Bases:
catalyst.metrics._metric.IMetric
@TODO: docs here
ICallbackLoaderMetric¶
-
class
catalyst.metrics._metric.
ICallbackLoaderMetric
(compute_on_call: bool = True, prefix: str = None, suffix: str = None)[source]¶ Bases:
catalyst.metrics._metric.IMetric
Interface for all Metrics.
- Parameters
compute_on_call – @TODO: docs
prefix – @TODO: docs
suffix – @TODO: docs
AccumulationMetric¶
-
class
catalyst.metrics._metric.
AccumulationMetric
(accumulative_fields: Iterable[str] = None, compute_on_call: bool = True, prefix: Optional[str] = None, suffix: Optional[str] = None)[source]¶ Bases:
catalyst.metrics._metric.ICallbackLoaderMetric
This metric accumulates all the input data along loader
- Parameters
accumulative_fields – list of keys to accumulate data from batch
compute_on_call – if True, allows compute metric’s value on call
prefix – metric prefix
suffix – metric suffix
General Metrics¶
AdditiveValueMetric¶
-
class
catalyst.metrics._additive.
AdditiveValueMetric
(compute_on_call: bool = True)[source]¶ Bases:
catalyst.metrics._metric.IMetric
This metric computes mean and std values of input data.
- Parameters
compute_on_call – if True, computes and returns metric value during metric call
ConfusionMatrixMetric¶
-
class
catalyst.metrics._confusion_matrix.
ConfusionMatrixMetric
(num_classes: int, normalized: bool = False, compute_on_call: bool = True)[source]¶ Bases:
catalyst.metrics._metric.IMetric
Constructs a confusion matrix for a multiclass classification problems.
- Parameters
num_classes – number of classes in the classification problem
normalized – determines whether or not the confusion matrix is normalized or not
compute_on_call – Boolean flag to computes and return confusion matrix during __call__. default: True
BatchFunctionalMetric¶
-
class
catalyst.metrics._functional_metric.
BatchFunctionalMetric
(metric_fn: Callable, metric_name: str)[source]¶ Bases:
catalyst.metrics._metric.ICallbackBatchMetric
Class for custom metric in functional way. Note: the loader metrics calculated as average over all batch metrics
- Parameters
metric_fn – metric function, that get outputs, targets and return score as torch.Tensor
metric_name – metric name
Runner Metrics¶
Accuracy - AccuracyMetric¶
-
class
catalyst.metrics._accuracy.
AccuracyMetric
(topk_args: List[int] = None, num_classes: int = None, compute_on_call: bool = True, prefix: str = None, suffix: str = None)[source]¶ Bases:
catalyst.metrics._metric.ICallbackBatchMetric
This metric computes accuracy for multiclass classification case. It computes mean value of accuracy and it’s approximate std value (note that it’s not a real accuracy std but std of accuracy over batch mean values).
- Parameters
topk_args – list of topk for accuracy@topk computing
num_classes – number of classes
compute_on_call – if True, computes and returns metric value during metric call
prefix – metric prefix
suffix – metric suffix
Accuracy - MultilabelAccuracyMetric¶
-
class
catalyst.metrics._accuracy.
MultilabelAccuracyMetric
(threshold: Union[float, torch.Tensor] = 0.5, compute_on_call: bool = True, prefix: Optional[str] = None, suffix: Optional[str] = None)[source]¶ Bases:
catalyst.metrics._additive.AdditiveValueMetric
,catalyst.metrics._metric.ICallbackBatchMetric
This metric computes accuracy for multilabel classification case. It computes mean value of accuracy and it’s approximate std value (note that it’s not a real accuracy std but std of accuracy over batch mean values).
- Parameters
compute_on_call – if True, computes and returns metric value during metric call
prefix – metric prefix
suffix – metric suffix
threshold – thresholds for model scores
AUCMetric¶
-
class
catalyst.metrics._auc.
AUCMetric
(compute_on_call: bool = True, prefix: str = None, suffix: str = None)[source]¶ Bases:
catalyst.metrics._metric.ICallbackLoaderMetric
AUC metric,
- Parameters
compute_on_call – if True, computes and returns metric value during metric call
prefix – metric prefix
suffix – metric suffix
Classification – BinaryPrecisionRecallF1Metric¶
-
class
catalyst.metrics._classification.
BinaryPrecisionRecallF1Metric
(zero_division: int = 0, compute_on_call: bool = True, prefix: Optional[str] = None, suffix: Optional[str] = None)[source]¶ Bases:
catalyst.metrics._classification.StatisticsMetric
Precision, recall, f1_score and support metrics for binary classification.
- Parameters
zero_division – value to set in case of zero division during metrics (precision, recall) computation; should be one of 0 or 1
compute_on_call – if True, allows compute metric’s value on call
prefix – metric prefix
suffix – metric suffix
Classification – MulticlassPrecisionRecallF1SupportMetric¶
-
class
catalyst.metrics._classification.
MulticlassPrecisionRecallF1SupportMetric
(num_classes: int = None, zero_division: int = 0, compute_on_call: bool = True, prefix: Optional[str] = None, suffix: Optional[str] = None)[source]¶ Bases:
catalyst.metrics._classification.PrecisionRecallF1SupportMetric
Precision, recall, f1_score and support metrics for multiclass classification. Counts metrics with macro, micro and weighted average.
- Parameters
num_classes – number of classes in loader’s dataset
zero_division – value to set in case of zero division during metrics (precision, recall) computation; should be one of 0 or 1
compute_on_call – if True, allows compute metric’s value on call
prefix – metric prefix
suffix – metric suffix
Classification – MultilabelPrecisionRecallF1SupportMetric¶
-
class
catalyst.metrics._classification.
MultilabelPrecisionRecallF1SupportMetric
(num_classes: int = None, zero_division: int = 0, compute_on_call: bool = True, prefix: Optional[str] = None, suffix: Optional[str] = None)[source]¶ Bases:
catalyst.metrics._classification.PrecisionRecallF1SupportMetric
Precision, recall, f1_score and support metrics for multilabel classification. Counts metrics with macro, micro and weighted average.
- Parameters
num_classes – number of classes in loader’s dataset
zero_division – value to set in case of zero division during metrics (precision, recall) computation; should be one of 0 or 1
compute_on_call – if True, allows compute metric’s value on call
prefix – metric prefix
suffix – metric suffix
CMCMetric¶
-
class
catalyst.metrics._cmc_score.
CMCMetric
(embeddings_key: str, labels_key: str, is_query_key: str, topk_args: Iterable[int] = None, compute_on_call: bool = True, prefix: Optional[str] = None, suffix: Optional[str] = None)[source]¶ Bases:
catalyst.metrics._metric.AccumulationMetric
Cumulative Matching Characteristics
- Parameters
embeddings_key – key of embedding tensor in batch
labels_key – key of label tensor in batch
is_query_key – key of query flag tensor in batch
topk_args – list of k, specifies which cmc@k should be calculated
compute_on_call – if True, allows compute metric’s value on call
prefix – metric prefix
suffix – metric suffix
Examples
>>> from collections import OrderedDict >>> from torch.optim import Adam >>> from torch.utils.data import DataLoader >>> from catalyst.contrib import nn >>> from catalyst.contrib.datasets import MnistMLDataset, MnistQGDataset >>> from catalyst.data import BalanceBatchSampler, HardTripletsSampler >>> from catalyst.dl import ControlFlowCallback, LoaderMetricCallback, SupervisedRunner >>> from catalyst.metrics import CMCMetric >>> >>> dataset_root = "." >>> >>> # download dataset for train and val, create loaders >>> dataset_train = MnistMLDataset(root=dataset_root, download=True, transform=None) >>> sampler = BalanceBatchSampler(labels=dataset_train.get_labels(), p=5, k=10) >>> train_loader = DataLoader( >>> dataset=dataset_train, sampler=sampler, batch_size=sampler.batch_size >>> ) >>> dataset_valid = MnistQGDataset(root=dataset_root, transform=None, gallery_fraq=0.2) >>> valid_loader = DataLoader(dataset=dataset_valid, batch_size=1024) >>> >>> # model, optimizer, criterion >>> model = nn.Sequential(nn.Flatten(), nn.Linear(28 * 28, 100)) >>> optimizer = Adam(model.parameters()) >>> sampler_inbatch = HardTripletsSampler(norm_required=False) >>> criterion = nn.TripletMarginLossWithSampler( >>> margin=0.5, sampler_inbatch=sampler_inbatch >>> ) >>> >>> # batch data processing >>> class CustomRunner(SupervisedRunner): >>> def handle_batch(self, batch): >>> if self.is_train_loader: >>> images, targets = batch["features"].float(), batch["targets"].long() >>> features = model(images) >>> self.batch = { >>> "embeddings": features, >>> "targets": targets, >>> } >>> else: >>> images, targets, is_query = ( >>> batch["features"].float(), >>> batch["targets"].long(), >>> batch["is_query"].bool(), >>> ) >>> features = model(images) >>> self.batch = { >>> "embeddings": features, >>> "targets": targets, >>> "is_query": is_query, >>> } >>> >>> # training >>> runner = CustomRunner(input_key="features", output_key="embeddings") >>> runner.train( >>> model=model, >>> criterion=criterion, >>> optimizer=optimizer, >>> callbacks=OrderedDict( >>> { >>> "cmc": ControlFlowCallback( >>> LoaderMetricCallback( >>> CMCMetric( >>> embeddings_key="embeddings", >>> labels_key="targets", >>> is_query_key="is_query", >>> topk_args=(1, 3) >>> ), >>> input_key=["embeddings", "is_query"], >>> target_key=["targets"] >>> ), >>> loaders="valid", >>> ), >>> } >>> ), >>> loaders=OrderedDict({"train": train_loader, "valid": valid_loader}), >>> valid_loader="valid", >>> valid_metric="cmc01", >>> minimize_valid_metric=False, >>> logdir="./logs", >>> verbose=True, >>> num_epochs=3, >>> )
RecSys – HitrateMetric¶
-
class
catalyst.metrics._hitrate.
HitrateMetric
(topk_args: List[int] = None, compute_on_call: bool = True, prefix: str = None, suffix: str = None)[source]¶ Bases:
catalyst.metrics._metric.ICallbackBatchMetric
Calculates the hitrate.
- Parameters
topk_args – list of topk for hitrate@topk computing
compute_on_call – if True, computes and returns metric value during metric call
prefix – metric prefix
suffix – metric suffix
Compute mean value of hitrate and it’s approximate std value.
RecSys – MAPMetric¶
-
class
catalyst.metrics._map.
MAPMetric
(topk_args: List[int] = None, compute_on_call: bool = True, prefix: str = None, suffix: str = None)[source]¶ Bases:
catalyst.metrics._metric.ICallbackBatchMetric
Calculates the Mean Average Precision (MAP) for RecSys. The precision metric summarizes the fraction of relevant items out of the whole the recommendation list.
- Parameters
topk_args – list of topk for map@topk computing
compute_on_call – if True, computes and returns metric value during metric call
prefix – metric prefix
suffix – metric suffix
It computes mean value of map and it’s approximate std value
RecSys – MRRMetric¶
-
class
catalyst.metrics._mrr.
MRRMetric
(topk_args: List[int] = None, compute_on_call: bool = True, prefix: str = None, suffix: str = None)[source]¶ Bases:
catalyst.metrics._metric.ICallbackBatchMetric
Calculate the Mean Reciprocal Rank (MRR) score given model outputs and targets The precision metric summarizes the fraction of relevant items
- Parameters
topk_args – list of topk for mrr@topk computing
compute_on_call – if True, computes and returns metric value during metric call
prefix – metric prefix
suffix – metric suffix
Compute mean value of map and it’s approximate std value
RecSys – NDCGMetric¶
-
class
catalyst.metrics._ndcg.
NDCGMetric
(topk_args: List[int] = None, compute_on_call: bool = True, prefix: str = None, suffix: str = None)[source]¶ Bases:
catalyst.metrics._metric.ICallbackBatchMetric
Calculate the Normalized discounted cumulative gain (NDCG) score given model outputs and targets The precision metric summarizes the fraction of relevant items
- Parameters
topk_args – list of topk for ndcg@topk computing
compute_on_call – if True, computes and returns metric value during metric call
prefix – metric prefix
suffix – metric suffix
Compute mean value of ndcg and it’s approximate std value
Segmentation – RegionBasedMetric¶
-
class
catalyst.metrics._segmentation.
RegionBasedMetric
(metric_fn: Callable, metric_name: str, class_dim: int = 1, weights: Optional[List[float]] = None, class_names: Optional[List[str]] = None, threshold: Optional[float] = 0.5, compute_on_call: bool = True, prefix: Optional[str] = None, suffix: Optional[str] = None)[source]¶ Bases:
catalyst.metrics._metric.ICallbackBatchMetric
Logic class for all region based metrics, like IoU, Dice, Trevsky.
- Parameters
metric_fn – metric function, that get statistics and return score
metric_name – name of the metric
class_dim – indicates class dimension (K) for
outputs
andtargets
tensors (default = 1)weights – class weights
class_names – class names
threshold – threshold for outputs binarization
compute_on_call – Computes and returns metric value during metric call. Used for per-batch logging. default: True
prefix – metric prefix
suffix – metric suffix
Segmentation – DiceMetric¶
-
class
catalyst.metrics._segmentation.
DiceMetric
(class_dim: int = 1, weights: Optional[List[float]] = None, class_names: Optional[List[str]] = None, threshold: Optional[float] = None, eps: float = 1e-07, compute_on_call: bool = True, prefix: Optional[str] = None, suffix: Optional[str] = None)[source]¶ Bases:
catalyst.metrics._segmentation.RegionBasedMetric
Dice Metric, dice score = 2 * intersection / (intersection + union)) = 2 * tp / (2 * tp + fp + fn)
- Parameters
class_dim – indicates class dimention (K) for
outputs
andtensors (targets) –
weights – class weights
class_names – class names
threshold – threshold for outputs binarization
eps – epsilon to avoid zero division
compute_on_call – Computes and returns metric value during metric call. Used for per-batch logging. default: True
prefix – metric prefix
suffix – metric suffix
Segmentation – IOUMetric¶
-
class
catalyst.metrics._segmentation.
IOUMetric
(class_dim: int = 1, weights: Optional[List[float]] = None, class_names: Optional[List[str]] = None, threshold: Optional[float] = None, eps: float = 1e-07, compute_on_call: bool = True, prefix: Optional[str] = None, suffix: Optional[str] = None)[source]¶ Bases:
catalyst.metrics._segmentation.RegionBasedMetric
IoU Metric, iou score = intersection / union = tp / (tp + fp + fn).
- Parameters
class_dim – indicates class dimension (K) for
outputs
andtargets
tensors (default = 1)weights – class weights
class_names – class names
threshold – threshold for outputs binarization
eps – epsilon to avoid zero division
compute_on_call – Computes and returns metric value during metric call. Used for per-batch logging. default: True
prefix – metric prefix
suffix – metric suffix
Segmentation – TrevskyMetric¶
-
class
catalyst.metrics._segmentation.
TrevskyMetric
(alpha: float, beta: Optional[float] = None, class_dim: int = 1, weights: Optional[List[float]] = None, class_names: Optional[List[str]] = None, threshold: Optional[float] = None, eps: float = 1e-07, compute_on_call: bool = True, prefix: Optional[str] = None, suffix: Optional[str] = None)[source]¶ Bases:
catalyst.metrics._segmentation.RegionBasedMetric
Trevsky Metric, trevsky score = tp / (tp + fp * beta + fn * alpha)
- Parameters
alpha – false negative coefficient, bigger alpha bigger penalty for false negative. if beta is None, alpha must be in (0, 1)
beta – false positive coefficient, bigger alpha bigger penalty for false positive. Must be in (0, 1), if None beta = (1 - alpha)
class_dim – indicates class dimension (K) for
outputs
andtargets
tensors (default = 1)weights – class weights
class_names – class names
threshold – threshold for outputs binarization
eps – epsilon to avoid zero division
compute_on_call – Computes and returns metric value during metric call. Used for per-batch logging. default: True
prefix – metric prefix
suffix – metric suffix
Functional API¶
Accuracy¶
-
catalyst.metrics.functional._accuracy.
accuracy
(outputs: torch.Tensor, targets: torch.Tensor, topk: Sequence[int] = (1, )) → Sequence[torch.Tensor][source]¶ Computes multiclass accuracy@topk for the specified values of topk.
- Parameters
outputs – model outputs, logits with shape [bs; num_classes]
targets – ground truth, labels with shape [bs; 1]
topk – topk for accuracy@topk computing
- Returns
list with computed accuracy@topk
Example
>>> accuracy( >>> outputs=torch.tensor([ >>> [1, 0, 0], >>> [0, 1, 0], >>> [0, 0, 1], >>> ]), >>> targets=torch.tensor([0, 1, 2]), >>> ) [tensor([1.])] >>> accuracy( >>> outputs=torch.tensor([ >>> [1, 0, 0], >>> [0, 1, 0], >>> [0, 1, 0], >>> ]), >>> targets=torch.tensor([0, 1, 2]), >>> ) [tensor([0.6667])] >>> accuracy( >>> outputs=torch.tensor([ >>> [1, 0, 0], >>> [0, 1, 0], >>> [0, 0, 1], >>> ]), >>> targets=torch.tensor([0, 1, 2]), >>> topk=[1, 3], >>> ) [tensor([1.]), tensor([1.])] >>> accuracy( >>> outputs=torch.tensor([ >>> [1, 0, 0], >>> [0, 1, 0], >>> [0, 1, 0], >>> ]), >>> targets=torch.tensor([0, 1, 2]), >>> topk=[1, 3], >>> ) [tensor([0.6667]), tensor([1.])]
-
catalyst.metrics.functional._accuracy.
multilabel_accuracy
(outputs: torch.Tensor, targets: torch.Tensor, threshold: Union[float, torch.Tensor]) → torch.Tensor[source]¶ Computes multilabel accuracy for the specified activation and threshold.
- Parameters
outputs – NxK tensor that for each of the N examples indicates the probability of the example belonging to each of the K classes, according to the model.
targets – binary NxK tensort that encodes which of the K classes are associated with the N-th input (eg: a row [0, 1, 0, 1] indicates that the example is associated with classes 2 and 4)
threshold – threshold for for model output
- Returns
computed multilabel accuracy
Example
>>> multilabel_accuracy( >>> outputs=torch.tensor([ >>> [1, 0], >>> [0, 1], >>> ]), >>> targets=torch.tensor([ >>> [1, 0], >>> [0, 1], >>> ]), >>> threshold=0.5, >>> ) tensor([1.]) >>> multilabel_accuracy( >>> outputs=torch.tensor([ >>> [1.0, 0.0], >>> [0.6, 1.0], >>> ]), >>> targets=torch.tensor([ >>> [1, 0], >>> [0, 1], >>> ]), >>> threshold=0.5, >>> ) tensor(0.7500) >>> multilabel_accuracy( >>> outputs=torch.tensor([ >>> [1.0, 0.0], >>> [0.4, 1.0], >>> ]), >>> targets=torch.tensor([ >>> [1, 0], >>> [0, 1], >>> ]), >>> threshold=0.5, >>> ) tensor(1.0)
AUC¶
-
catalyst.metrics.functional._auc.
auc
(outputs: torch.Tensor, targets: torch.Tensor) → torch.Tensor[source]¶ Computes ROC-AUC.
- Parameters
outputs – NxK tensor that for each of the N examples indicates the probability of the example belonging to each of the K classes, according to the model.
targets – binary NxK tensort that encodes which of the K classes are associated with the N-th input (eg: a row [0, 1, 0, 1] indicates that the example is associated with classes 2 and 4)
- Returns
Tensor with [num_classes] shape of per-class-aucs
- Return type
torch.Tensor
Example
>>> auc( >>> outputs=torch.tensor([ >>> [0.9, 0.1], >>> [0.1, 0.9], >>> ]), >>> targets=torch.tensor([ >>> [1, 0], >>> [0, 1], >>> ]), >>> ) tensor([1., 1.]) >>> auc( >>> outputs=torch.tensor([ >>> [0.9], >>> [0.8], >>> [0.7], >>> [0.6], >>> [0.5], >>> [0.4], >>> [0.3], >>> [0.2], >>> [0.1], >>> [0.0], >>> ]), >>> targets=torch.tensor([ >>> [0], >>> [1], >>> [1], >>> [1], >>> [1], >>> [1], >>> [1], >>> [0], >>> [0], >>> [0], >>> ]), >>> ) tensor([0.7500])
Average Precision¶
-
catalyst.metrics.functional._average_precision.
binary_average_precision
(outputs: torch.Tensor, targets: torch.Tensor, weights: Optional[torch.Tensor] = None) → torch.Tensor[source]¶ Computes the average precision.
- Parameters
outputs – NxK tensor that for each of the N examples indicates the probability of the example belonging to each of the K classes, according to the model.
targets – binary NxK tensort that encodes which of the K classes are associated with the N-th input (eg: a row [0, 1, 0, 1] indicates that the example is associated with classes 2 and 4)
weights – importance for each sample
- Returns
tensor of [K; ] shape, with average precision for K classes
- Return type
torch.Tensor
Examples
>>> binary_average_precision( >>> outputs=torch.Tensor([0.1, 0.4, 0.35, 0.8]), >>> targets=torch.Tensor([0, 0, 1, 1]), >>> ) tensor([0.8333])
-
catalyst.metrics.functional._average_precision.
mean_average_precision
(outputs: torch.Tensor, targets: torch.Tensor, topk: List[int]) → List[torch.Tensor][source]¶ Calculate the mean average precision (MAP) for RecSys. The metrics calculate the mean of the AP across all batches
MAP amplifies the interest in finding many relevant items for each query
- Parameters
outputs (torch.Tensor) – Tensor with predicted score size: [batch_size, slate_length] model outputs, logits
targets (torch.Tensor) – Binary tensor with ground truth. 1 means the item is relevant and 0 not relevant size: [batch_szie, slate_length] ground truth, labels
topk (List[int]) – List of parameter for evaluation topK items
- Returns
The map score for every k. size: len(top_k)
- Return type
map_at_k (Tuple[float])
Examples
>>> mean_average_precision( >>> outputs=torch.tensor([ >>> [9, 8, 7, 6, 5, 4, 3, 2, 1, 0], >>> [9, 8, 7, 6, 5, 4, 3, 2, 1, 0], >>> ]), >>> targets=torch.tensor([ >>> [1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0], >>> [0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0], >>> ]), >>> topk=[10], >>> ) [tensor(0.5325)]
-
catalyst.metrics.functional._average_precision.
average_precision
(outputs: torch.Tensor, targets: torch.Tensor) → torch.Tensor[source]¶ Calculate the Average Precision for RecSys. The precision metric summarizes the fraction of relevant items out of the whole the recommendation list.
To compute the precision at k set the threshold rank k, compute the percentage of relevant items in topK, ignoring the documents ranked lower than k.
The average precision at k (AP at k) summarizes the average precision for relevant items up to the k-th one. Wikipedia entry for the Average precision
<https://en.wikipedia.org/w/index.php?title=Information_retrieval& oldid=793358396#Average_precision>
If a relevant document never gets retrieved, we assume the precision corresponding to that relevant doc to be zero
- Parameters
outputs (torch.Tensor) – Tensor with predicted score size: [batch_size, slate_length] model outputs, logits
targets (torch.Tensor) – Binary tensor with ground truth. 1 means the item is relevant and 0 not relevant size: [batch_szie, slate_length] ground truth, labels
- Returns
The map score for each batch. size: [batch_size, 1]
- Return type
ap_score (torch.Tensor)
Examples
>>> average_precision( >>> outputs=torch.tensor([ >>> [9, 8, 7, 6, 5, 4, 3, 2, 1, 0], >>> [9, 8, 7, 6, 5, 4, 3, 2, 1, 0], >>> ]), >>> targets=torch.tensor([ >>> [1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0], >>> [0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0], >>> ]), >>> ) tensor([0.6222, 0.4429])
Classification¶
-
catalyst.metrics.functional._classification.
f1score
(precision_value, recall_value, eps=1e-05)[source]¶ Calculating F1-score from precision and recall to reduce computation redundancy.
- Parameters
precision_value – precision (0-1)
recall_value – recall (0-1)
eps – epsilon to use
- Returns
F1 score (0-1)
-
catalyst.metrics.functional._classification.
precision_recall_fbeta_support
(outputs: torch.Tensor, targets: torch.Tensor, beta: float = 1, eps: float = 1e-06, argmax_dim: int = -1, num_classes: Optional[int] = None, zero_division: int = 0) → Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor][source]¶ Counts precision_val, recall, fbeta_score.
- Parameters
outputs – A list of predicted elements
targets – A list of elements that are to be predicted
beta – beta param for f_score
eps – epsilon to avoid zero division
argmax_dim – int, that specifies dimension for argmax transformation in case of scores/probabilities in
outputs
num_classes – int, that specifies number of classes if it known.
zero_division – int value, should be one of 0 or 1; used for precision_val and recall computation
- Returns
tuple of precision_val, recall, fbeta_score
Examples
>>> precision_recall_fbeta_support( >>> outputs=torch.tensor([ >>> [1, 0, 0], >>> [0, 1, 0], >>> [0, 0, 1], >>> ]), >>> targets=torch.tensor([0, 1, 2]), >>> beta=1, >>> ) ( tensor([1., 1., 1.]), # precision_val per class tensor([1., 1., 1.]), # recall per class tensor([1., 1., 1.]), # fbeta per class tensor([1., 1., 1.]), # support per class ) >>> precision_recall_fbeta_support( >>> outputs=torch.tensor([[0, 0, 1, 1, 0, 1, 0, 1]]), >>> targets=torch.tensor([[0, 1, 0, 1, 0, 0, 1, 1]]), >>> beta=1, >>> ) ( tensor([0.5000, 0.5000]), # precision per class tensor([0.5000, 0.5000]), # recall per class tensor([0.5000, 0.5000]), # fbeta per class tensor([4., 4.]), # support per class )
-
catalyst.metrics.functional._classification.
precision
(tp: int, fp: int, zero_division: int = 0) → float[source]¶ Calculates precision (a.k.a. positive predictive value) for binary classification and segmentation.
- Parameters
tp – number of true positives
fp – number of false positives
zero_division – int value, should be one of 0 or 1; if both tp==0 and fp==0 return this value as s result
- Returns
precision value (0-1)
-
catalyst.metrics.functional._classification.
recall
(tp: int, fn: int, zero_division: int = 0) → float[source]¶ Calculates recall (a.k.a. true positive rate) for binary classification and segmentation.
- Parameters
tp – number of true positives
fn – number of false negatives
zero_division – int value, should be one of 0 or 1; if both tp==0 and fn==0 return this value as s result
- Returns
recall value (0-1)
-
catalyst.metrics.functional._classification.
get_aggregated_metrics
(tp: numpy.array, fp: numpy.array, fn: numpy.array, support: numpy.array, zero_division: int = 0) → Tuple[numpy.array, numpy.array, numpy.array, numpy.array][source]¶ Count precision, recall, f1 scores per-class and with macro, weighted and micro average with statistics.
- Parameters
tp – array of shape (num_classes, ) of true positive statistics per class
fp – array of shape (num_classes, ) of false positive statistics per class
fn – array of shape (num_classes, ) of false negative statistics per class
support – array of shape (num_classes, ) of samples count per class
zero_division – int value, should be one of 0 or 1; used for precision and recall computation
- Returns
per-class, micro, macro, weighted averaging
- Return type
arrays of metrics
-
catalyst.metrics.functional._classification.
get_binary_metrics
(tp: int, fp: int, fn: int, zero_division: int) → Tuple[float, float, float][source]¶ - Get precision, recall, f1 score metrics from true positive, false positive,
false negative statistics for binary classification
- Parameters
tp – true positive
fp – false positive
fn – false negative
zero_division – int value, should be 0 or 1
- Returns
precision, recall, f1 scores
CMC Score¶
-
catalyst.metrics.functional._cmc_score.
cmc_score_count
(distances: torch.Tensor, conformity_matrix: torch.Tensor, topk: int = 1) → float[source]¶ Function to count CMC from distance matrix and conformity matrix.
- Parameters
distances – distance matrix shape of (n_embeddings_x, n_embeddings_y)
conformity_matrix – binary matrix with 1 on same label pos and 0 otherwise
topk – number of top examples for cumulative score counting
- Returns
cmc score
-
catalyst.metrics.functional._cmc_score.
cmc_score
(query_embeddings: torch.Tensor, gallery_embeddings: torch.Tensor, conformity_matrix: torch.Tensor, topk: int = 1) → float[source]¶ Function to count CMC score from query and gallery embeddings.
- Parameters
query_embeddings – tensor shape of (n_embeddings, embedding_dim) embeddings of the objects in query
gallery_embeddings – tensor shape of (n_embeddings, embedding_dim) embeddings of the objects in gallery
conformity_matrix – binary matrix with 1 on same label pos and 0 otherwise
topk – number of top examples for cumulative score counting
- Returns
cmc score
F1 score¶
-
catalyst.metrics.functional._f1_score.
f1_score
(outputs: torch.Tensor, targets: torch.Tensor, eps: float = 1e-07, argmax_dim: int = -1, num_classes: Optional[int] = None) → Union[float, torch.Tensor][source]¶ Fbeta_score with beta=1.
- Parameters
outputs – A list of predicted elements
targets – A list of elements that are to be predicted
eps – epsilon to avoid zero division
argmax_dim – int, that specifies dimension for argmax transformation in case of scores/probabilities in
outputs
num_classes – int, that specifies number of classes if it known
- Returns
F_1 score
- Return type
float
-
catalyst.metrics.functional._f1_score.
fbeta_score
(outputs: torch.Tensor, targets: torch.Tensor, beta: float = 1.0, eps: float = 1e-07, argmax_dim: int = -1, num_classes: Optional[int] = None) → Union[float, torch.Tensor][source]¶ Counts fbeta score for given
outputs
andtargets
.- Parameters
outputs – A list of predicted elements
targets – A list of elements that are to be predicted
beta – beta param for f_score
eps – epsilon to avoid zero division
argmax_dim – int, that specifies dimension for argmax transformation in case of scores/probabilities in
outputs
num_classes – int, that specifies number of classes if it known
- Raises
ValueError – If
beta
is a negative number.- Returns
F_1 score.
- Return type
float
Focal¶
-
catalyst.metrics.functional._focal.
sigmoid_focal_loss
(outputs: torch.Tensor, targets: torch.Tensor, gamma: float = 2.0, alpha: float = 0.25, reduction: str = 'mean')[source]¶ Compute binary focal loss between target and output logits.
- Parameters
outputs – tensor of arbitrary shape
targets – tensor of the same shape as input
gamma – gamma for focal loss
alpha – alpha for focal loss
reduction (string, optional) – specifies the reduction to apply to the output:
"none"
|"mean"
|"sum"
|"batchwise_mean"
."none"
: no reduction will be applied,"mean"
: the sum of the output will be divided by the number of elements in the output,"sum"
: the output will be summed.
- Returns
computed loss
-
catalyst.metrics.functional._focal.
reduced_focal_loss
(outputs: torch.Tensor, targets: torch.Tensor, threshold: float = 0.5, gamma: float = 2.0, reduction='mean') → torch.Tensor[source]¶ Compute reduced focal loss between target and output logits.
It has been proposed in Reduced Focal Loss: 1st Place Solution to xView object detection in Satellite Imagery paper.
Note
size_average
andreduce
params are in the process of being deprecated, and in the meantime, specifying either of those two args will overridereduction
.Source: https://github.com/BloodAxe/pytorch-toolbelt
- Parameters
outputs – tensor of arbitrary shape
targets – tensor of the same shape as input
threshold – threshold for focal reduction
gamma – gamma for focal reduction
reduction – specifies the reduction to apply to the output:
"none"
|"mean"
|"sum"
|"batchwise_mean"
."none"
: no reduction will be applied,"mean"
: the sum of the output will be divided by the number of elements in the output,"sum"
: the output will be summed."batchwise_mean"
computes mean loss per sample in batch. Default: “mean”
- Returns: # noqa: DAR201
torch.Tensor: computed loss
Hitrate¶
-
catalyst.metrics.functional._hitrate.
hitrate
(outputs: torch.Tensor, targets: torch.Tensor, topk: List[int]) → List[torch.Tensor][source]¶ Calculate the hit rate score given model outputs and targets. Hit-rate is a metric for evaluating ranking systems. Generate top-N recommendations and if one of the recommendation is actually what user has rated, you consider that a hit. By rate we mean any explicit form of user’s interactions. Add up all of the hits for all users and then divide by number of users
Compute top-N recomendation for each user in the training stage and intentionally remove one of this items fro the training data.
- Parameters
outputs (torch.Tensor) – Tensor with predicted score size: [batch_size, slate_length] model outputs, logits
targets (torch.Tensor) – Binary tensor with ground truth. 1 means the item is relevant for the user and 0 not relevant size: [batch_size, slate_length] ground truth, labels
topk (List[int]) – Parameter fro evaluation on top-k items
- Returns
the hit rate score
- Return type
hitrate_at_k (List[torch.Tensor])
MRR¶
-
catalyst.metrics.functional._mrr.
reciprocal_rank
(outputs: torch.Tensor, targets: torch.Tensor, k: int) → torch.Tensor[source]¶ Calculate the Reciprocal Rank (MRR) score given model outputs and targets Data aggregated in batches.
- Parameters
outputs – Tensor weith predicted score size: [batch_size, slate_length] model outputs, logits
targets – Binary tensor with ground truth. 1 means the item is relevant and 0 if it’s not relevant size: [batch_size, slate_length] ground truth, labels
k – Parameter for evaluation on top-k items
- Returns
MRR score
Examples
>>> reciprocal_rank( >>> outputs=torch.Tensor([ >>> [4.0, 2.0, 3.0, 1.0], >>> [1.0, 2.0, 3.0, 4.0], >>> ]), >>> targets=torch.Tensor([ >>> [0, 0, 1.0, 1.0], >>> [0, 0, 1.0, 1.0], >>> ]), >>> k=1, >>> ) tensor([[0.], [1.]]) >>> reciprocal_rank( >>> outputs=torch.Tensor([ >>> [4.0, 2.0, 3.0, 1.0], >>> [1.0, 2.0, 3.0, 4.0], >>> ]), >>> targets=torch.Tensor([ >>> [0, 0, 1.0, 1.0], >>> [0, 0, 1.0, 1.0], >>> ]), >>> k=3, >>> ) tensor([[0.5000], [1.0000]])
-
catalyst.metrics.functional._mrr.
mrr
(outputs: torch.Tensor, targets: torch.Tensor, topk: List[int]) → List[torch.Tensor][source]¶ Calculate the Mean Reciprocal Rank (MRR) score given model outputs and targets Data aggregated in batches.
The MRR@k is the mean overall batch of the reciprocal rank, that is the rank of the highest ranked relevant item, if any in the top k, 0 otherwise. https://en.wikipedia.org/wiki/Mean_reciprocal_rank
- Parameters
outputs – Tensor weith predicted score size: [batch_size, slate_length] model outputs, logits
targets – Binary tensor with ground truth. 1 means the item is relevant and 0 if it’s not relevant size: [batch_szie, slate_length] ground truth, labels
topk – Parameter fro evaluation on top-k items
- Returns
MRR score
Examples
>>> mrr( >>> outputs=torch.Tensor([ >>> [4.0, 2.0, 3.0, 1.0], >>> [1.0, 2.0, 3.0, 4.0], >>> ]), >>> targets=torch.Tensor([ >>> [0, 0, 1.0, 1.0], >>> [0, 0, 1.0, 1.0], >>> ]), >>> k=[1, 3], >>> ) [tensor(0.5000), tensor(0.7500)]
NDCG¶
-
catalyst.metrics.functional._ndcg.
dcg
(outputs: torch.Tensor, targets: torch.Tensor, gain_function='exp_rank') → torch.Tensor[source]¶ Computes Discounted cumulative gain (DCG) DCG@topk for the specified values of k. Graded relevance as a measure of usefulness, or gain, from examining a set of items. Gain may be reduced at lower ranks. Reference: https://en.wikipedia.org/wiki/Discounted_cumulative_gain
- Parameters
outputs – model outputs, logits with shape [batch_size; slate_length]
targets – ground truth, labels with shape [batch_size; slate_length]
gain_function – String indicates the gain function for the ground truth labels. Two options available: - exp_rank: torch.pow(2, x) - 1 - linear_rank: x On the default, exp_rank is used to emphasize on retrieving the relevant documents.
- Returns
The discounted gains tensor
- Return type
dcg_score (torch.Tensor)
- Raises
ValueError – gain function can be either pow_rank or rank
Examples
>>> dcg( >>> outputs = torch.tensor([ >>> [3, 2, 1, 0], >>> ]), >>> targets = torch.Tensor([ >>> [2.0, 2.0, 1.0, 0.0], >>> ]), >>> gain_function="linear_rank", >>> ) tensor([[2.0000, 2.0000, 0.6309, 0.0000]]) >>> dcg( >>> outputs = torch.tensor([ >>> [3, 2, 1, 0], >>> ]), >>> targets = torch.Tensor([ >>> [2.0, 2.0, 1.0, 0.0], >>> ]), >>> gain_function="linear_rank", >>> ).sum() tensor(4.6309) >>> dcg( >>> outputs = torch.tensor([ >>> [3, 2, 1, 0], >>> ]), >>> targets = torch.Tensor([ >>> [2.0, 2.0, 1.0, 0.0], >>> ]), >>> gain_function="exp_rank", >>> ) tensor([[3.0000, 1.8928, 0.5000, 0.0000]]) >>> dcg( >>> outputs = torch.tensor([ >>> [3, 2, 1, 0], >>> ]), >>> targets = torch.Tensor([ >>> [2.0, 2.0, 1.0, 0.0], >>> ]), >>> gain_function="exp_rank", >>> ).sum() tensor(5.3928)
-
catalyst.metrics.functional._ndcg.
ndcg
(outputs: torch.Tensor, targets: torch.Tensor, topk: List[int], gain_function='exp_rank') → List[torch.Tensor][source]¶ Computes nDCG@topk for the specified values of topk.
- Parameters
outputs (torch.Tensor) – model outputs, logits with shape [batch_size; slate_size]
targets (torch.Tensor) – ground truth, labels with shape [batch_size; slate_size]
gain_function – callable, gain function for the ground truth labels. Two options available: - exp_rank: torch.pow(2, x) - 1 - linear_rank: x On the default, exp_rank is used to emphasize on retrieving the relevant documents.
topk (List[int]) – Parameter fro evaluation on top-k items
- Returns
tuple with computed ndcg@topk
- Return type
results (Tuple[float])
Examples
>>> ndcg( >>> outputs = torch.tensor([ >>> [0.5, 0.2, 0.1], >>> [0.5, 0.2, 0.1], >>> ]), >>> targets = torch.Tensor([ >>> [1.0, 0.0, 1.0], >>> [1.0, 0.0, 1.0], >>> ]), >>> topk=[2], >>> gain_function="exp_rank", >>> ) [tensor(0.6131)] >>> ndcg( >>> outputs = torch.tensor([ >>> [0.5, 0.2, 0.1], >>> [0.5, 0.2, 0.1], >>> ]), >>> targets = torch.Tensor([ >>> [1.0, 0.0, 1.0], >>> [1.0, 0.0, 1.0], >>> ]), >>> topk=[2], >>> gain_function="exp_rank", >>> ) [tensor(0.5000)]
Precision¶
-
catalyst.metrics.functional._precision.
precision
(outputs: torch.Tensor, targets: torch.Tensor, argmax_dim: int = -1, eps: float = 1e-07, num_classes: Optional[int] = None) → Union[float, torch.Tensor][source]¶ Multiclass precision score.
- Parameters
outputs – estimated targets as predicted by a model with shape [bs; …, (num_classes or 1)]
targets – ground truth (correct) target values with shape [bs; …, 1]
argmax_dim – int, that specifies dimension for argmax transformation in case of scores/probabilities in
outputs
eps – float. Epsilon to avoid zero division.
num_classes – int, that specifies number of classes if it known
- Returns
precision for every class
- Return type
Tensor
Examples
>>> precision( >>> outputs=torch.tensor([ >>> [1, 0, 0], >>> [0, 1, 0], >>> [0, 0, 1], >>> ]), >>> targets=torch.tensor([0, 1, 2]), >>> beta=1, >>> ) tensor([1., 1., 1.]) >>> precision( >>> outputs=torch.tensor([[0, 0, 1, 1, 0, 1, 0, 1]]), >>> targets=torch.tensor([[0, 1, 0, 1, 0, 0, 1, 1]]), >>> ) tensor([0.5000, 0.5000]
Recall¶
-
catalyst.metrics.functional._recall.
recall
(outputs: torch.Tensor, targets: torch.Tensor, argmax_dim: int = -1, eps: float = 1e-07, num_classes: Optional[int] = None) → Union[float, torch.Tensor][source]¶ Multiclass recall score.
- Parameters
outputs – estimated targets as predicted by a model with shape [bs; …, (num_classes or 1)]
targets – ground truth (correct) target values with shape [bs; …, 1]
argmax_dim – int, that specifies dimension for argmax transformation in case of scores/probabilities in
outputs
eps – float. Epsilon to avoid zero division.
num_classes – int, that specifies number of classes if it known
- Returns
recall for every class
- Return type
Tensor
Examples
>>> recall( >>> outputs=torch.tensor([ >>> [1, 0, 0], >>> [0, 1, 0], >>> [0, 0, 1], >>> ]), >>> targets=torch.tensor([0, 1, 2]), >>> ) tensor([1., 1., 1.]) >>> precision_recall_fbeta_support( >>> outputs=torch.tensor([[0, 0, 1, 1, 0, 1, 0, 1]]), >>> targets=torch.tensor([[0, 1, 0, 1, 0, 0, 1, 1]]), >>> ) tensor([0.5000, 0.5000])
Segmentation¶
-
catalyst.metrics.functional._segmentation.
iou
(outputs: torch.Tensor, targets: torch.Tensor, class_dim: int = 1, threshold: float = None, mode: str = 'per-class', weights: Optional[List[float]] = None, eps: float = 1e-07) → torch.Tensor[source]¶ Computes the iou/jaccard score, iou score = intersection / union = tp / (tp + fp + fn)
- Parameters
outputs – [N; K; …] tensor that for each of the N examples indicates the probability of the example belonging to each of the K classes, according to the model.
targets – binary [N; K; …] tensor that encodes which of the K classes are associated with the N-th input
class_dim – indicates class dimention (K) for
outputs
andtargets
tensors (default = 1), if mode = “micro” means nothingthreshold – threshold for outputs binarization
mode – class summation strategy. Must be one of [‘micro’, ‘macro’, ‘weighted’, ‘per-class’]. If mode=’micro’, classes are ignored, and metric are calculated generally. If mode=’macro’, metric are calculated per-class and than are averaged over all classes. If mode=’weighted’, metric are calculated per-class and than summed over all classes with weights. If mode=’per-class’, metric are calculated separately for all classes
weights – class weights(for mode=”weighted”)
eps – epsilon to avoid zero division
- Returns
IoU (Jaccard) score for each class(if mode=’weighted’) or aggregated IOU
Example
>>> size = 4 >>> half_size = size // 2 >>> shape = (1, 1, size, size) >>> empty = torch.zeros(shape) >>> full = torch.ones(shape) >>> left = torch.ones(shape) >>> left[:, :, :, half_size:] = 0 >>> right = torch.ones(shape) >>> right[:, :, :, :half_size] = 0 >>> top_left = torch.zeros(shape) >>> top_left[:, :, :half_size, :half_size] = 1 >>> pred = torch.cat([empty, left, empty, full, left, top_left], dim=1) >>> targets = torch.cat([full, right, empty, full, left, left], dim=1) >>> iou( >>> outputs=pred, >>> targets=targets, >>> class_dim=1, >>> threshold=0.5, >>> mode="per-class" >>> ) tensor([0.0000, 0.0000, 1.0000, 1.0000, 1.0000, 0.5])
-
catalyst.metrics.functional._segmentation.
dice
(outputs: torch.Tensor, targets: torch.Tensor, class_dim: int = 1, threshold: float = None, mode: str = 'per-class', weights: Optional[List[float]] = None, eps: float = 1e-07) → torch.Tensor[source]¶ Computes the dice score, dice score = 2 * intersection / (intersection + union)) = = 2 * tp / (2 * tp + fp + fn)
- Parameters
outputs – [N; K; …] tensor that for each of the N examples indicates the probability of the example belonging to each of the K classes, according to the model.
targets – binary [N; K; …] tensor that encodes which of the K classes are associated with the N-th input
class_dim – indicates class dimention (K) for
outputs
andtargets
tensors (default = 1), if mode = “micro” means nothingthreshold – threshold for outputs binarization
mode – class summation strategy. Must be one of [‘micro’, ‘macro’, ‘weighted’, ‘per-class’]. If mode=’micro’, classes are ignored, and metric are calculated generally. If mode=’macro’, metric are calculated per-class and than are averaged over all classes. If mode=’weighted’, metric are calculated per-class and than summed over all classes with weights. If mode=’per-class’, metric are calculated separately for all classes
weights – class weights(for mode=”weighted”)
eps – epsilon to avoid zero division
- Returns
Dice score for each class(if mode=’weighted’) or aggregated Dice
Example
>>> size = 4 >>> half_size = size // 2 >>> shape = (1, 1, size, size) >>> empty = torch.zeros(shape) >>> full = torch.ones(shape) >>> left = torch.ones(shape) >>> left[:, :, :, half_size:] = 0 >>> right = torch.ones(shape) >>> right[:, :, :, :half_size] = 0 >>> top_left = torch.zeros(shape) >>> top_left[:, :, :half_size, :half_size] = 1 >>> pred = torch.cat([empty, left, empty, full, left, top_left], dim=1) >>> targets = torch.cat([full, right, empty, full, left, left], dim=1) >>> dice( >>> outputs=pred, >>> targets=targets, >>> class_dim=1, >>> threshold=0.5, >>> mode="per-class" >>> ) tensor([0.0000, 0.0000, 1.0000, 1.0000, 1.0000, 0.6667])
-
catalyst.metrics.functional._segmentation.
trevsky
(outputs: torch.Tensor, targets: torch.Tensor, alpha: float, beta: Optional[float] = None, class_dim: int = 1, threshold: float = None, mode: str = 'per-class', weights: Optional[List[float]] = None, eps: float = 1e-07) → torch.Tensor[source]¶ Computes the trevsky score, trevsky score = tp / (tp + fp * beta + fn * alpha)
- Parameters
outputs – [N; K; …] tensor that for each of the N examples indicates the probability of the example belonging to each of the K classes, according to the model.
targets – binary [N; K; …] tensor that encodes which of the K classes are associated with the N-th input
alpha – false negative coefficient, bigger alpha bigger penalty for false negative. Must be in (0, 1)
beta – false positive coefficient, bigger alpha bigger penalty for false positive. Must be in (0, 1), if None beta = (1 - alpha)
class_dim – indicates class dimention (K) for
outputs
andtargets
tensors (default = 1)threshold – threshold for outputs binarization
mode – class summation strategy. Must be one of [‘micro’, ‘macro’, ‘weighted’, ‘per-class’]. If mode=’micro’, classes are ignored, and metric are calculated generally. If mode=’macro’, metric are calculated per-class and than are averaged over all classes. If mode=’weighted’, metric are calculated per-class and than summed over all classes with weights. If mode=’per-class’, metric are calculated separately for all classes
weights – class weights(for mode=”weighted”)
eps – epsilon to avoid zero division
- Returns
Trevsky score for each class(if mode=’weighted’) or aggregated score
Example
>>> size = 4 >>> half_size = size // 2 >>> shape = (1, 1, size, size) >>> empty = torch.zeros(shape) >>> full = torch.ones(shape) >>> left = torch.ones(shape) >>> left[:, :, :, half_size:] = 0 >>> right = torch.ones(shape) >>> right[:, :, :, :half_size] = 0 >>> top_left = torch.zeros(shape) >>> top_left[:, :, :half_size, :half_size] = 1 >>> pred = torch.cat([empty, left, empty, full, left, top_left], dim=1) >>> targets = torch.cat([full, right, empty, full, left, left], dim=1) >>> trevsky( >>> outputs=pred, >>> targets=targets, >>> alpha=0.2, >>> class_dim=1, >>> threshold=0.5, >>> mode="per-class" >>> ) tensor([0.0000, 0.0000, 1.0000, 1.0000, 1.0000, 0.8333])
-
catalyst.metrics.functional._segmentation.
get_segmentation_statistics
(outputs: torch.Tensor, targets: torch.Tensor, class_dim: int = 1, threshold: float = None) → Tuple[torch.Tensor, torch.Tensor, torch.Tensor][source]¶ Computes true positive, false positive, false negative for a multilabel segmentation problem.
- Parameters
outputs – [N; K; …] tensor that for each of the N examples indicates the probability of the example belonging to each of the K classes, according to the model.
targets – binary [N; K; …] tensor that encodes which of the K classes are associated with the N-th input
class_dim – indicates class dimention (K) for
outputs
andtargets
tensors (default = 1)threshold – threshold for outputs binarization
- Returns
Segmentation stats
Example
>>> size = 4 >>> half_size = size // 2 >>> shape = (1, 1, size, size) >>> empty = torch.zeros(shape) >>> full = torch.ones(shape) >>> left = torch.ones(shape) >>> left[:, :, :, half_size:] = 0 >>> right = torch.ones(shape) >>> right[:, :, :, :half_size] = 0 >>> top_left = torch.zeros(shape) >>> top_left[:, :, :half_size, :half_size] = 1 >>> pred = torch.cat([empty, left, empty, full, left, top_left], dim=1) >>> targets = torch.cat([full, right, empty, full, left, left], dim=1) >>> get_segmentation_statistics( >>> outputs=pred, >>> targets=targets, >>> class_dim=1, >>> threshold=0.5, >>> ) (tensor([ 0., 0., 0., 16., 8., 4.]), tensor([0., 8., 0., 0., 0., 0.]), tensor([16., 8., 0., 0., 0., 4.]))
Misc¶
-
catalyst.metrics.functional._misc.
check_consistent_length
(*tensors)[source]¶ Check that all arrays have consistent first dimensions. Checks whether all objects in arrays have the same shape or length.
- Parameters
tensors – list or tensors of input objects. Objects that will be checked for consistent length.
- Raises
ValueError – “Inconsistent numbers of samples”
-
catalyst.metrics.functional._misc.
process_multilabel_components
(outputs: torch.Tensor, targets: torch.Tensor, weights: Optional[torch.Tensor] = None) → Tuple[torch.Tensor, torch.Tensor, torch.Tensor][source]¶ General preprocessing for multilabel-based metrics.
- Parameters
outputs – NxK tensor that for each of the N examples indicates the probability of the example belonging to each of the K classes, according to the model.
targets – binary NxK tensor that encodes which of the K classes are associated with the N-th input (eg: a row [0, 1, 0, 1] indicates that the example is associated with classes 2 and 4)
weights – importance for each sample
- Returns
processed
outputs
andtargets
with [batch_size; num_classes] shape
-
catalyst.metrics.functional._misc.
process_recsys_components
(outputs: torch.Tensor, targets: torch.Tensor) → torch.Tensor[source]¶ General pre-processing for calculation recsys metrics
- Parameters
outputs (torch.Tensor) – Tensor with predicted scores size: [batch_size, slate_length] model outputs, logits
targets (torch.Tensor) – Binary tensor with ground truth. 1 means the item is relevant for the user and 0 not relevant size: [batch_szie, slate_length] ground truth, labels
- Returns
targets tensor sorted by outputs
- Return type
targets_sorted_by_outputs (torch.Tensor)
-
catalyst.metrics.functional._misc.
get_binary_statistics
(outputs: torch.Tensor, targets: torch.Tensor, label: int = 1) → Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor][source]¶ Computes the number of true negative, false positive, false negative, true positive and support for a binary classification problem for a given label.
- Parameters
outputs – estimated targets as predicted by a model with shape [bs; …, 1]
targets – ground truth (correct) target values with shape [bs; …, 1]
label – integer, that specifies label of interest for statistics compute
- Returns
stats
- Return type
Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]
Example
>>> y_pred = torch.tensor([[0, 0, 1, 1, 0, 1, 0, 1]]) >>> y_true = torch.tensor([[0, 1, 0, 1, 0, 0, 1, 1]]) >>> tn, fp, fn, tp, support = get_binary_statistics(y_pred, y_true) tensor(2) tensor(2) tensor(2) tensor(2) tensor(4)
-
catalyst.metrics.functional._misc.
get_multiclass_statistics
(outputs: torch.Tensor, targets: torch.Tensor, argmax_dim: int = -1, num_classes: Optional[int] = None) → Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor][source]¶ Computes the number of true negative, false positive, false negative, true positive and support for a multiclass classification problem.
- Parameters
outputs – estimated targets as predicted by a model with shape [bs; …, (num_classes or 1)]
targets – ground truth (correct) target values with shape [bs; …, 1]
argmax_dim – int, that specifies dimension for argmax transformation in case of scores/probabilities in
outputs
num_classes – int, that specifies number of classes if it known
- Returns
stats
- Return type
Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]
Example
>>> y_pred = torch.tensor([1, 2, 3, 0]) >>> y_true = torch.tensor([1, 3, 4, 0]) >>> tn, fp, fn, tp, support = get_multiclass_statistics(y_pred, y_true) tensor([3., 3., 3., 2., 3.]), tensor([0., 0., 1., 1., 0.]), tensor([0., 0., 0., 1., 1.]), tensor([1., 1., 0., 0., 0.]), tensor([1., 1., 0., 1., 1.])
-
catalyst.metrics.functional._misc.
get_multilabel_statistics
(outputs: torch.Tensor, targets: torch.Tensor) → Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor][source]¶ Computes the number of true negative, false positive, false negative, true positive and support for a multilabel classification problem.
- Parameters
outputs – estimated targets as predicted by a model with shape [bs; …, (num_classes or 1)]
targets – ground truth (correct) target values with shape [bs; …, 1]
- Returns
stats
- Return type
Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]
Example
>>> y_pred = torch.tensor([[0, 0, 1, 1], [0, 1, 0, 1]]) >>> y_true = torch.tensor([[0, 1, 0, 1], [0, 0, 1, 1]]) >>> tn, fp, fn, tp, support = get_multilabel_statistics(y_pred, y_true) tensor([2., 0., 0., 0.]) tensor([0., 1., 1., 0.]), tensor([0., 1., 1., 0.]) tensor([0., 0., 0., 2.]), tensor([0., 1., 1., 2.])
>>> y_pred = torch.tensor([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) >>> y_true = torch.tensor([0, 1, 2]) >>> tn, fp, fn, tp, support = get_multilabel_statistics(y_pred, y_true) tensor([2., 2., 2.]) tensor([0., 0., 0.]) tensor([0., 0., 0.]) tensor([1., 1., 1.]) tensor([1., 1., 1.])
>>> y_pred = torch.tensor([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) >>> y_true = torch.nn.functional.one_hot(torch.tensor([0, 1, 2])) >>> tn, fp, fn, tp, support = get_multilabel_statistics(y_pred, y_true) tensor([2., 2., 2.]) tensor([0., 0., 0.]) tensor([0., 0., 0.]) tensor([1., 1., 1.]) tensor([1., 1., 1.])
-
catalyst.metrics.functional._misc.
get_default_topk_args
(num_classes: int) → Sequence[int][source]¶ Calculate list params for
Accuracy@k
andmAP@k
.- Parameters
num_classes – number of classes
- Returns
array of accuracy arguments
- Return type
iterable
Examples
>>> get_default_topk_args(num_classes=4) [1, 3]
>>> get_default_topk_args(num_classes=8) [1, 3, 5]