Source code for catalyst.callbacks.metrics.auc
from typing import TYPE_CHECKING
from catalyst.callbacks.metric import LoaderMetricCallback
from catalyst.metrics._auc import AUCMetric
from catalyst.settings import SETTINGS
if TYPE_CHECKING:
from catalyst.core.runner import IRunner
[docs]class AUCCallback(LoaderMetricCallback):
"""ROC-AUC metric callback.
Args:
input_key: input key to use for auc calculation, specifies our ``y_true``.
target_key: output key to use for auc calculation, specifies our ``y_pred``.
compute_per_class_metrics: boolean flag to compute per-class metrics
(default: SETTINGS.compute_per_class_metrics or False).
prefix: metric prefix
suffix: metric suffix
Examples:
.. code-block:: python
import torch
from torch.utils.data import DataLoader, TensorDataset
from catalyst import dl
# sample data
num_samples, num_features, num_classes = int(1e4), int(1e1), 4
X = torch.rand(num_samples, num_features)
y = (torch.rand(num_samples,) * num_classes).to(torch.int64)
# pytorch loaders
dataset = TensorDataset(X, y)
loader = DataLoader(dataset, batch_size=32, num_workers=1)
loaders = {"train": loader, "valid": loader}
# model, criterion, optimizer, scheduler
model = torch.nn.Linear(num_features, num_classes)
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters())
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [2])
# model training
runner = dl.SupervisedRunner(
input_key="features",
output_key="logits",
target_key="targets",
loss_key="loss"
)
runner.train(
model=model,
criterion=criterion,
optimizer=optimizer,
scheduler=scheduler,
loaders=loaders,
logdir="./logdir",
num_epochs=3,
valid_loader="valid",
valid_metric="accuracy03",
minimize_valid_metric=False,
verbose=True,
callbacks=[
dl.AccuracyCallback(
input_key="logits", target_key="targets", num_classes=num_classes
),
dl.PrecisionRecallF1SupportCallback(
input_key="logits", target_key="targets", num_classes=num_classes
),
dl.AUCCallback(input_key="logits", target_key="targets"),
],
)
.. note::
Please follow the `minimal examples`_ sections for more use cases.
.. _`minimal examples`: https://github.com/catalyst-team/catalyst#minimal-examples # noqa: E501, W505
"""
[docs] def __init__(
self,
input_key: str,
target_key: str,
compute_per_class_metrics: bool = SETTINGS.compute_per_class_metrics,
prefix: str = None,
suffix: str = None,
):
"""Init."""
super().__init__(
metric=AUCMetric(
compute_per_class_metrics=compute_per_class_metrics,
prefix=prefix,
suffix=suffix,
),
input_key=input_key,
target_key=target_key,
)
def on_experiment_start(self, runner: "IRunner") -> None:
"""Event handler."""
assert (
not runner.engine.use_fp16
), "AUCCallback could not work within amp training"
return super().on_experiment_start(runner)
__all__ = ["AUCCallback"]