Shortcuts

Source code for catalyst.callbacks.metrics.cmc_score

from typing import List

from catalyst.callbacks.metric import LoaderMetricCallback
from catalyst.metrics._cmc_score import CMCMetric


[docs]class CMCScoreCallback(LoaderMetricCallback): """ Cumulative Matching Characteristics callback. This callback was designed to count cumulative matching characteristics. If current object is from query your dataset should output `True` in `is_query_key` and false if current object is from gallery. You can see `QueryGalleryDataset` in `catalyst.contrib.datasets.metric_learning` for more information. On batch end callback accumulate all embeddings Args: embeddings_key: embeddings key in output dict labels_key: labels key in output dict is_query_key: bool key True if current object is from query topk_args: specifies which cmc@K to log. [1] - cmc@1 [1, 3] - cmc@1 and cmc@3 [1, 3, 5] - cmc@1, cmc@3 and cmc@5 prefix: metric prefix suffix: metric suffix .. note:: You should use it with `ControlFlowCallback` and add all query/gallery sets to loaders. Loaders should contain "is_query" and "label" key. An usage example can be found in Readme.md under "CV - MNIST with Metric Learning". """ def __init__( self, embeddings_key: str, labels_key: str, is_query_key: str, topk_args: List[int] = None, prefix: str = None, suffix: str = None, ): """Init.""" super().__init__( metric=CMCMetric( embeddings_key=embeddings_key, labels_key=labels_key, is_query_key=is_query_key, topk_args=topk_args, prefix=prefix, suffix=suffix, ), input_key=[embeddings_key, is_query_key], target_key=[labels_key], )
__all__ = ["CMCScoreCallback"]